Stable Ranks for C*-algebras and Rokhlin Actions

(Based on joint work with Ms. Anshu)

Prahlad Vaidyanathan

Department of Mathematics
IISER Bhopal

July 17, 2020
Lebesgue Covering Dimension
Let X be a compact Hausdorff space and \mathcal{V} be an open cover of X. We say that \mathcal{V} has order m if every point in X belongs to at most m elements of \mathcal{V}.

Definition

The (Lebesgue covering) dimension of X is at most n if every open cover of X has a refinement \mathcal{V}, such that

$$\text{order}(\mathcal{V}) \leq n + 1$$
Figure 1: Dimension of a Circle (Source: Wikipedia)

The open cover (on the right) has a refinement (on the left) of order 2. Hence,

$$\text{dim}(S^1) \leq 1$$
If C denotes the Cantor set, then

C is totally disconnected

(ie. C has a basis consisting of cl-open sets)

Every open cover of C has a refinement consisting of disjoint sets

(ie. of order 1). Hence,

$$\dim(C) = 0$$
Theorem

Let X be a compact Hausdorff space. Then $\dim(X)$ is the least integer n such that, for any continuous function

$$f : X \rightarrow \mathbb{R}^{n+1}$$

and any $\epsilon > 0$, there is a continuous function

$$g : X \rightarrow \mathbb{R}^{n+1}$$

such that $\|f - g\|_\infty < \epsilon$ and

$$0 \notin g(X)$$

This says that 0 is an unstable value for f.
Theorem

Let X be a compact Hausdorff space. Then $\dim(X)$ is the least integer n such that any $(n+1)$-tuple

$$(f_1, f_2, \ldots, f_{n+1}) \in C(X, \mathbb{R})^{n+1}$$

can be approximated arbitrarily closely by a tuple

$$(g_1, g_2, \ldots, g_{n+1}) \in C(X, \mathbb{R})^{n+1}$$

such that

$$\sum_{i=1}^{n+1} g_i^2$$

is a strictly positive function.
Stable Ranks for C*-algebras
Connection to C*-algebras

Definition

A C*-algebra is a Banach algebra A together with an involution $a \mapsto a^*$ satisfying certain conditions.

Example:

- \mathbb{C} is a C*-algebra.
- If X is a compact Hausdorff space, $C(X) = C(X, \mathbb{C})$ is a C*-algebra.
- If H is a Hilbert space, $B(H)$ is a C*-algebra.
Stable Rank for C*-algebras

Definition (Rieffel (1982))

Let A be a C*-algebra. The *topological stable rank* (tsr) of A is the least integer n such that any tuple

$$(a_1, a_2, \ldots, a_n) \in A^n$$

can be approximated arbitrarily closely by a tuple

$$(b_1, b_2, \ldots, b_n) \in A^n$$

such that

$$\sum_{i=1}^{n} b_i^* b_i$$

is invertible in A.

If no such integer exists, we write $\text{tsr}(A) = +\infty$.
Examples

- Since a complex valued function can be thought of as a pair of real-valued functions, we have

\[tsr(C(X)) = \left\lceil \frac{\dim(X)}{2} \right\rceil + 1 \]

where \(\lceil x \rceil \) is the ‘integer part’ of \(x \).

- \(tsr(\mathbb{C}) = 1 \)

- More generally, if \(A \) is a finite dimensional C*-algebra, then

\[tsr(A) = 1 \]
Examples

- For any C*-algebra A,

$$tsr(A) = 1 \iff GL(A) \text{ is dense in } A$$

- If $S \in B(\ell^2)$ denotes the right-shift operator, then S cannot be approximated by invertibles. Hence, if $A := C^*(S)$, then

$$tsr(A) \neq 1$$

In fact, $tsr(A) = 2$.

- If H is an infinite dimensional Hilbert space, then

$$tsr(B(H)) = +\infty$$
How are stable ranks useful?

- Knowing the stable rank of an algebra helps answer questions in ‘nonstable’ K-theory. ie. One can use K-theoretic information to extract information about elements (projections or unitaries) in the algebra.
- Algebras with stable rank 1 have nice regularity properties that are useful in classification.
Group Actions on C*-algebras
Standing assumption:

- G = Finite group
- A = Unital, separable C*-algebra.

Define

$$\text{Aut}(A) := \{\text{involution-preserving automorphisms of } A\}$$

Note that Aut(A) is a group under composition.

Definition

A *group action* of G on A is a group homomorphism

$$\alpha : G \rightarrow \text{Aut}(A)$$
• If $G \curvearrowright X$ is an action of G on a compact Hausdorff space X, then it induces an action $\alpha : G \curvearrowright C(X)$ by

$$\alpha_g(f)(x) := f(g^{-1} \cdot x)$$

• Furthermore, every C^*-algebra action of G on $C(X)$ arises in this way.

• If $\alpha \in \text{Aut}(A)$ is an automorphism of order N, then it induces a group action

$$\alpha : \mathbb{Z}_N \rightarrow \text{Aut}(A)$$
Given an action $G \curvearrowright X$ on a space X, one can take the quotient

$$X/G$$
Crossed Product C*-algebras

Given an action $G \curvearrowright X$ on a space X, one can take the quotient X/G.

If $\alpha : G \curvearrowright A$ is an action of G on a C*-algebra A, then the analogous object to consider is $A \rtimes_\alpha G$.

The crossed product.

One can think of it like a semi-direct product of G with A.
Example

If $\alpha \in \text{Aut}(A)$ has order N, then the crossed product

$$A \rtimes_{\alpha} \mathbb{Z}_N$$

is the subalgebra of $M_N(A)$ generated by elements of the form

$$\pi(a) := \begin{pmatrix}
 a \\
 \alpha(a) \\
 \vdots \\
 \alpha^{N-1}(a)
\end{pmatrix}$$

and $U := \begin{pmatrix}
 0 & 1 \\
 0 & 1 \\
 \vdots & \vdots \\
 0 & 1
\end{pmatrix}$

Once can check that

$$\pi(\alpha(a)) = U\pi(a)U^{-1}$$
The Main Question

Question

If $\alpha : G \to \text{Aut}(A)$ is a group action of a finite group on a C*-algebra, can we estimate $\text{tsr}(A \rtimes_{\alpha} G)$ in terms of $\text{tsr}(A)$?

In 2007, Jeong, Osaka, Phillips and Teruya proved that

$$\text{tsr}(A \rtimes_{\alpha} G) \leq \text{tsr}(A) + |G| - 1$$
The Main Question

We had two objectives:

- Can we improve this estimate if we impose certain conditions on the action?
- Can we also find estimates for other ‘ranks’? (Topological stable rank is not the only dimension theory for C*-algebras)
Rokhlin Actions
An action $\alpha : G \curvearrowright A$ is said to have the **Rokhlin property** if, for any finite set $F \subset A$ and any $\epsilon > 0$, there are projections $\{e_g : g \in G\} \subset A$ such that

1. $\sum_{g \in G} e_g = 1_A$ [Partition of Unity]
2. $\alpha_g(e_h) = e_{gh}$ [Permuted by G]
3. $\|e_g a - ae_g\| < \epsilon$ [Approximately commutes with F]
Example: Commutative C*-algebras

If $A = C(X)$, then a projection in A corresponds to a cl-open set in X. Hence, the condition above implies that

X is totally disconnected.

(ie. X has a basis consisting of cl-open sets)

Furthermore, if X is totally disconnected, the Rokhlin property is equivalent to saying that

the action is free.
If A is non-commutative, then A tends to admit a Rokhlin action if A is low-dimensional.

(ie. A has a lot of projections)
If A is non-commutative, then A tends to admit a Rokhlin action if A is low-dimensional.

(ie. A has a lot of projections)

Not every C*-algebra admits a Rokhlin action of a finite group (for instance, A_{θ} and O_{∞} do not).
Example: $A = M_{2\infty}$

Let A be the UHF algebra of type 2^∞

$$A = \bigotimes_{n=1}^{\infty} M_2(\mathbb{C})$$

Let $v = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix} \in M_2(\mathbb{C})$ and

$$\text{Ad}(v) : M_2(\mathbb{C}) \to M_2(\mathbb{C})$$

be given by $a \mapsto vav^*$

Then

$$\alpha := \bigotimes_{n=1}^{\infty} \text{Ad}(v)$$

is an order 2 automorphism of A, so defines an action

$$\alpha : \mathbb{Z}_2 \curvearrowright M_{2\infty}$$

This action has the Rokhlin property.
Main Result

Theorem (Anshu, PV (2020))

If \(\alpha : G \to \text{Aut}(A) \) is an action of a finite group on a unital, separable C*-algebra with the Rokhlin property, then

\[
\text{tsr}(A \rtimes_\alpha G) \leq \left\lceil \frac{\text{tsr}(A) - 1}{|G|} \right\rceil + 1
\]
• Analogous inequalities also hold for a number of other ‘ranks’ for C*-algebras, including:
 1. Connected stable rank
 2. General stable rank
 3. Real Rank
• In 2012, Osaka and Phillips proved that, if the action is Rokhlin and $\text{tsr}(A) = 1$, then

$$\text{tsr}(A \rtimes_{\alpha} G) = 1$$

So our theorem is a strengthening of that result.
Thank you!