Structure of Solids - X-ray diffraction Studies

Lecture 4

CHM 637 Chemistry & Physics of Materials

Varadharajan Srinivasan Dept. Of Chemistry IISER Bhopal

Lecture Plan

- Introduction to X-rays and diffraction
- Basics of Elastic Scattering
- Interaction of an electron with X-rays
- Bragg's formulation of X-ray diffraction by crystals

Diffraction

Phenomenon in which light waves bend at obstacles or slits.

Can be understood using the Huygens-Fresnel principle (secondary wavelets originating from each point along the obstacle/slit.

The secondary wavelets superpose to yield interference patterns on a screen.

Location of first minimum $d \sin \theta_{min} = \lambda$

- θ_{MAX,0}=0 $\theta_{MIN,0}$

Source: Wikipedia

Diffraction

If there is a regular array of slits then the diffracted waves at each slit superpose with each other to yield an interference pattern.

Location of maxima $d\sin\theta_m = m\lambda$ (at normal incidence) Where *m* is any integer

Intensity of the maxima is highest at the central peak.

Observation of diffraction effects require

Source: Wikipedia

 $d \approx \lambda$

X-rays

Electromagnetic radiation with wavelength in the range 100 to 0.01 Å (100 eV - 1 MeV).

For XRD we are interested in X-rays with wavelengths ~ 1 Å (around 10 KeV).

X-rays can ionise matter, photo-excite core electrons, inelastically scatter from loosely bound electrons (Compton effect) and get diffracted from crystals.

X-rays can penetrate bulk of crystals and hence can probe crystal structure.

Elastic scattering of X-rays

A general scattering event between a projectile and a scatterer can affect the momentum and energy of the projectile particles. \vec{p}, E

$$\vec{p'} - \vec{p} = \hbar \vec{q}$$

$$E' - E = \hbar\omega$$

Elastic scattering is said to occur when E'-E=0It is straightforward to show that in this condition

p', E'Scattering $\hbar \vec{q}$ Recoil $-\hbar \vec{q}, \hbar \omega$ $q = \frac{2p}{\hbar} \sin\left(\frac{\phi}{2}\right)$

Elastic scattering of X-rays

with no change in wavelength) is measured to yield crystal structure

The oscillating electric field of X-rays induces oscillations in bound electrons of same frequency.

This oscillation charge then radiates to yield the scattered X-rays.

Assuming a classical picture, we can work out a relation for the scattered intensity.

X-rays interact with electrons in crystals and get scattered. The elastically scattered part (i.e.

Source: Elena Willinger' Lectures (FHI)

Thomson scattering formula

Consider an electron subject to e-m wave interacting with it through its electric field. Assuming linearly polarised field $-e E_z \hat{k} \sin(\omega t) = m\vec{a}(t)$ $\Rightarrow \vec{a}(t) = -\frac{e}{m}E_z \sin(\omega t)\hat{k}$

Source: Elena Willinger' Lectures (FHI)

An accelerating charge emits radiation. The electric field strength is given by the Larmor formula.

Larmor's (Radiation) Formula

The total energy radiated per unit time per unit solid angle by an accelerating charge is given by

dP	e^{2}
$\overline{d\Omega}$ -	$\overline{16}$

Where a(t) is the acceleration and the angle between the incident polarisation and re-radiated beam is θ

$$\frac{a^2(t)}{\tau^2\epsilon_0 c^3} \sin^2\theta$$

Thomson scattering formula

The ratio of the time-averaged (over a time period of e-m wave) scattered power and the incident intensity is defined as the **scattering cross section**.

$$\sigma = \frac{\langle P \rangle}{\langle I_0 \rangle} = \frac{8\pi}{3} r_0^2 \qquad r_0 = \frac{1}{4\pi} r_0^2$$

Bringing back the directional dependence of the emitted radiation Source: Elena Willinger' Lectures (FHI) and averaging over incident polarisation we can also define the differential cross section as $d\sigma r_0^2$ (1 - 2 - 0) Note: Here the angle here to the scattering

 $d\Omega$

 $ns^2 2\theta$

Note: Here the angle here refers to the scattering geometry

References

Physics and Chemistry of Materials (Textbook for course) Introduction to Electrodynamics D. J. Griffiths Elena Willinger's Lectures at FHI (Fundamentals of X-ray Diffraction, 2014-15 Winter) Other links ... please check course website

Derivation of the Thomson Scattering Fomula a pit P $\vec{E}(F,t) = E_{sin}(\omega t - k \cdot r) \hat{z}$ Generally: $\vec{E} = E_0 \hat{\epsilon} \hat{s} \hat{m} (\omega t - \vec{k} \cdot \vec{r})$ $\vec{E} = \hat{\epsilon}$, $\vec{k} = k \hat{\kappa}$ $\vec{E}_0 \hat{\epsilon}$ $\vec{F}(t) \cong q \vec{E}(t) = m \vec{a}(t) | - 0$ A. Jor an em. wave E. k = 0 for an em. wave $\overline{a}(t) = 2 \underbrace{\overline{b}}_{m} \underbrace{\overline{s}}_{m}(\omega t) - \partial$

Larmor formula: $\frac{dP}{d\Omega} = \frac{2^2 \left\langle a^2(t) \right\rangle \sin^2 \alpha}{16\pi^2 6 c^3} - (3)$ X - angle between the out-going radiation & the direction of acceleration of the particle For our case or allEucillé $\left\langle \ldots \right\rangle \longrightarrow \lim_{Q \to Q} average over a pund$ $<math display="block"> = \frac{1}{T} \int dt \cdots = \frac{1}{T} \int dt \cdots$

 $\frac{2}{m^2} E_0^{\prime} \left(\frac{\sin^2(\omega t)}{1} \right)$ $\langle a(t) \rangle =$ $(4) \leftarrow = \frac{q^2 \mathcal{E}_0^2}{2m^2} \left(\frac{1}{T} \int_0^T dt \sin^2(\omega t) - \frac{1}{T} \int_0^T dt \sin^2(\omega$ Substitute (4) in (3) Substitute (4) in (3) The time-averaged scattered power per unit solved angle (2) $\frac{dP}{d\Omega} = \left(\frac{2^2}{4\pi \epsilon_{sm}^2}\right)^2 \frac{6(E_{o}(sm)^2)}{2}$

Time-averaged intensity of X-ray incident on the electron: $\left(\sim W \right) m^{2}$ $\langle I \rangle = \langle u \rangle \times C$ $= \frac{\epsilon_{b} c E_{b}^{2}}{2}$ (6)

Scattering Cross section]. total power radiated time - averaged medeut Entensity $=\langle P \rangle / \langle I \rangle - \partial$

= Jdy Jdo x271 x sind dd Ja $= \frac{8\pi}{3} \left(\frac{2^{2}}{4\pi 6_{3} \text{mc}^{2}} \right)^{2} - \frac{9}{7}$ Long = n.2 ____ 10

Assume a right handed system of aves dong 2 2xk 2k r is also the scattérent désection & Therefore 11 to k' P & Ilak ýż xł 4 -> The inident r K plane 1 to 2 it y

Ω = sinf cost 2 + sinfsinf(2×k) $+\cos\varphi_{\hat{z}}^{2}$ -(1) $cond = \pi \cdot 7$ $\sin \phi \cos \psi = (12)$ $\left(\frac{d\sigma}{d\Omega} \right) = \left(\frac{2^2}{4\pi\epsilon_0 mc^2} \right)^2 \frac{\sin^2 \alpha}{\sin^2 \alpha}$ $= \left(\frac{2^2}{4\pi\epsilon_0 mc^2} \right)^2 \left(1 - co^2 \alpha \right) (1)$

 $| - \cos^2 \alpha = | - \sin^2 \varphi \cos^2 \psi$ = $| - \sin^2 \varphi \int \cos^2 \psi d\psi$ $= \int -\frac{\sin^2 \varphi}{\sin^2 \varphi}$ $= \left(1 + \cos^2 \varphi\right) - 2$ (4)

 $\sigma_{\sigma}^{0} \left(\frac{d\sigma}{d\Omega}\right) = \left(\frac{q^{2}}{4\pi 6mc^{2}}\right)^{2} \left(\frac{1+c\sigma^{2}}{2}\right)^{2}$ I scattering augle $cor \varphi = k \cdot \hat{\eta} = \hat{k} \cdot \hat{k}'$ $\psi = 20$

 \checkmark