CHM 428/638 Assignment 1

January 28, 2024

Due on 6^{th} Feb, 2024.

- 1. In the following expressions where \hat{A} is an operator, specify whether each expression is a ket, a bra, an operator or a number.
 - (a) $\langle \phi | \hat{A} | \psi \rangle \langle \psi |$
 - (b) $\hat{A}|\psi\rangle\langle\psi|$
 - (c) $\langle \phi | \hat{A} | \psi \rangle \langle \psi | \hat{A}$
 - (d) $|\psi\rangle\langle\phi|$
 - (e) $\langle \psi | \hat{A}$
 - (f) $\hat{A}|\phi\rangle$
- 2. For a linear operator \hat{A} show that
 - (a) For any two states $|\phi\rangle$ and $|\psi\rangle$, $\langle\psi|\hat{A}^{\dagger}|\phi\rangle = \overline{\langle\phi|\hat{A}|\psi\rangle}$. (b) $\left(\hat{A}^{\dagger}\right)^{\dagger} = \hat{A}$. (c) $\left(\hat{A}_{1}\hat{A}_{2}\dots\hat{A}_{n}\right)^{\dagger} = \hat{A}_{n}^{\dagger}\hat{A}_{n-1}^{\dagger}\dots\hat{A}_{1}^{\dagger}$.
- 3. Show that any linear operator can be written as a sum of Hermitian and a skew-Hermitian operator. If an operator is assumed to be associated with a complex dynamical variable and its adjoint with the complex conjugate of the variable then also show that operators corresponding to real dynamical variables are always Hermitian.

- 4. The commutator of any two operators \hat{A} and \hat{B} is defined as $\hat{C}(A, B) = \begin{bmatrix} \hat{A}, \hat{B} \end{bmatrix} = \hat{A}\hat{B} \hat{B}\hat{A}$. Show that
 - (a) $\hat{C}^{\dagger}(A,B) = -\hat{C}^{\dagger}(A^{\dagger},B^{\dagger})$
 - (b) $\hat{C}(A, BD) = \hat{C}(A, B)\hat{D} + \hat{B}\hat{C}(A, D)$
 - (c) $\left[\hat{A}, \hat{C}(B, D)\right] + \left[\hat{B}, \hat{C}(D, A)\right] + \left[\hat{D}, \hat{C}(A, B)\right] = 0$ (Jacobi identity).
- 5. A Hermitian operator \hat{A} has the eigenvalue equation $\hat{A}|\phi_n\rangle = \lambda_n |\phi_n\rangle$. Show that
 - (a) All eigenvalues are real and the eigenkets corresponding to two different eigenvalues are mutually orthogonal.
 - (b) The eigenkets belonging to the same (degenerate) eigenvalue form a linear vector space of dimension equal to the degeneracy.
 - (c) Show that $\sin(k\hat{A})|\phi_n\rangle = \sin(k\lambda_n)|\phi_n\rangle$.
 - (d) If $\hat{A}^m |\psi\rangle = 0$ for some ket $|\psi\rangle$ and some integer m > 0 then $\hat{A} |\psi\rangle = 0$.
- 6. Show that the eigenvalues of a skew-Hermitian operator are either purely imaginary or zero.
- 7. Show that if two linear operators \hat{A} and \hat{B} commute then \hat{A} and $f(\hat{B})$ also commute where f is a function of the operator \hat{B} .
- 8. If \hat{A} and \hat{B} are two linear Hermitian operators then show that $\hat{A}\hat{B}$ is Hermitian only if \hat{A} and \hat{B} commute.
- 9. A system was prepared in a quantum state $|\psi\rangle$ on which a measurement of the observable \hat{P} yields the values p_1 with 40% probability and p_2 with 60% probability. Also a subsequent measurement of the observable \hat{Q} results in the values q_1 and q_2 with the probability ratio 2:3 if the result of the first measurement was p_1 and in the ratio 1:4 if the result of the first measurement was p_2 .
 - (a) Construct (at least) one guess for $|\psi\rangle$ in terms of the eigenstates of \hat{P} .

- (b) Using the above guess write down a relation between the eigenstates of \hat{P} and \hat{Q} . Remember that both operators are Hermitian.
- (c) Write down $|\psi\rangle$ in terms of the eigenstates of $\hat{Q}.$
- (d) Do the two observables commute?
- (e) Construct the matrix $U_{ij} = \langle p_i | q_j \rangle$ and show that it is unitary.