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Lecture 5 Energies in a QM system



Introduction and Review

Lecture Plan

Quantum Systems

 Particle in a box

- Harmonic oscillator

* Rigid rotor

- Many-particle quantum systems



Quantum Systems

Particle in a box

Consider a quantum particle trapped in a cubic box of volume V=L3

Eigenvalues are given by three quantum numbers 4
h27T2

€ng,ny,m. =
v 2m L2

(ni -+ nz + ng)

Energy

where allowed values for each n=1,2,3,...

Spectrum in 1-d case
E.g., for H atom h*m?

in V=1 cms. Im, L2
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Quantum Systems

Particle in a box
Typical energy in systems ~ kg T =4.14 x 10-21J (@ T = 300 K)

=>n~1x108

Minimum energy gap

h27T2
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The gap is very small fraction of the level energy. Hence we can essentially treat the
energies as continuously varying.



Quantum Systems

Particle in a box
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Quantum Systems

Particle in a box

Example, canonical partition function

Q(N,V,T)=> exp(—Be(n)) = » eXp(—BQZLQ (ny +ny +n?))

n Ny Ny, Nz

T 2m
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Quantum Systems

Rigid Rotor

Eigenvalues

5 J=0.1.2
— J(J+1)— =0,1,2,...
€J ( + )21 I:/LRZ

Degeneracy of each level is 2J+1

h2
2uR?

Ae =€ —€g =2
~ 4.2 x 10722 For HCI with /=2.65 x 10-47 kg/m?3

Compared to the energy of first excitation in particle-in-a-box, this is much
larger.

Hence, quantisation of levels is more important in this case.



Quantum Systems

Harmonic oscillator

Eigenvalues

1
€, = (v + 5)hu v=0,1,2,...

Ae = €1 — €g = hv
~ 5.7 % 10720 For HCl with v = 8.65 x 10" H 2

> AE7"015

Hence, quantisation of levels is more important in this case too.



Quantum Systems

Electrons

Consider a H atom as example

13.0 n=1,2,3,...
€En — ——2€V
n
13.
Ae =€y — €1 = 5.6 X3 eV
4
~ 1.63 x 10787 v =8.65 x 101°Hz
=>> Aém'b

The electronic energies and populations essentially remain constant due to
this large gap. Thus, their contribution can be mostly ignored.



Quantum Systems

Many-electron systems

Consider a system of independent particles

H=~h+ho+ hsg+...
Separable Hamiltonian implies

E(nl,ng,ng, ) = €p, T €ny T €Eng T ...

Where n’s are quantum numbers. In the present case, each quantum number
corresponds to the level occupied by one of the N particles.

Thus, the microstate for a quantum system can be specified by specifying
these quantum numbers (n+, n2, n3, ...).



