CHM 421/621 Statistical Mechanics

Lecture 5 Energies in a QM system

Introduction and Review

Lecture Plan

Quantum Systems

- Particle in a box
- Harmonic oscillator
- Rigid rotor
- Many-particle quantum systems

Particle in a box

Consider a quantum particle trapped in a cubic box of volume $V=L^3$

Eigenvalues are given by three quantum numbers

$$\epsilon_{n_x,n_y,n_z} = \frac{\hbar^2 \pi^2}{2mL^2} \left(n_x^2 + n_y^2 + n_z^2 \right)$$

where allowed values for each n=1,2,3,...

E.g., for H atom in V=1 cm³.
$$\frac{\hbar^2\pi^2}{2mL^2} = 3.31\times 10^{-37}~J$$

Spectrum in 1-d case

Particle in a box

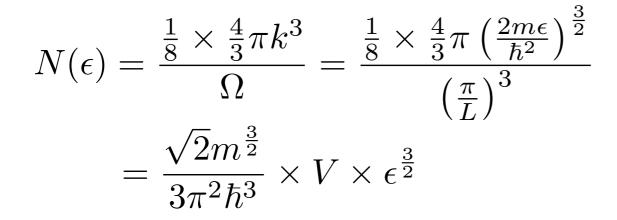
Typical energy in systems ~ $k_B T = 4.14 \times 10^{-21} J$ (@ T = 300 K) => $n \sim 1 \times 10^8$

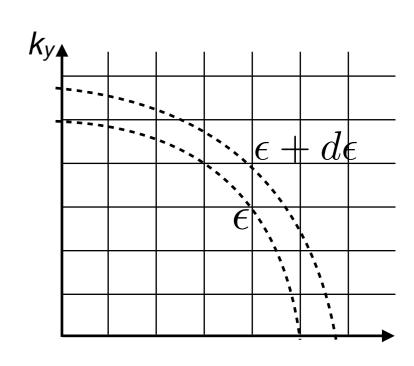
Minimum energy gap

$$\Delta \epsilon = \epsilon_{n_x, n_y, n_z} - \epsilon_{n_x + 1, n_y, n_z} = 2(n_x + 1) \frac{\hbar^2 \pi^2}{2mL^2}$$

$$\approx 2n_x \frac{\hbar^2 \pi^2}{2mL^2} = 10^{-8} \times \epsilon_{n_x, n_y, n_z}$$

The gap is very small fraction of the level energy. Hence we can essentially treat the energies as continuously varying.


Particle in a box


$$\vec{k} = \frac{\pi}{L} \left(n_x, n_y, n_z \right)$$

Eigenvalues are then

$$\epsilon(\vec{k}) = \frac{\hbar^2 k^2}{2m}$$

$$\Omega = \left(\frac{\pi}{L}\right)^3$$

Density of states:

No. of states in the shell (above) per unit volume

$$g(\epsilon) = \frac{1}{V} \frac{dN}{d\epsilon} = \frac{m^{\frac{3}{2}}}{\sqrt{2}\pi^2\hbar^3} \times \epsilon^{\frac{1}{2}}$$

Particle in a box

Example, canonical partition function

$$Q(N, V, T) = \sum_{\mathbf{n}} \exp(-\beta \epsilon(\mathbf{n})) = \sum_{n_x, n_y, n_z} \exp(-\beta \frac{\hbar^2}{2mL^2} (n_x^2 + n_y^2 + n_z^2))$$

$$= \sum_{k_x, k_y, k_z} \exp\left(-\beta \frac{\hbar^2 k^2}{2m}\right) \longrightarrow \frac{V}{\pi^3} \int d^3k \, \exp\left(-\beta \frac{\hbar^2 k^2}{2m}\right)$$

$$Q(N, V, T) = V \int_{0}^{\infty} d\epsilon \ g(\epsilon) \exp(-\beta \epsilon)$$

$$= \frac{V m^{\frac{3}{2}}}{\sqrt{2}\pi^{2}\hbar^{3}} \int_{0}^{\infty} d\epsilon \ \epsilon^{\frac{1}{2}} \exp(-\beta \epsilon) \qquad = \frac{V}{\Lambda^{3}}$$

$$\Lambda = \frac{h}{\sqrt{2\pi m k_{B}T}}$$

Rigid Rotor

Eigenvalues

Degeneracy of each level is 2J+1

$$\Delta\epsilon=\epsilon_1-\epsilon_0=2\frac{\hbar^2}{2\mu R^2}$$

$$\approx 4.2\times 10^{-22}J \qquad \text{For HCI with } \textit{I=2.65 x 10}^{-47}~\textit{kg/m}^{\text{3}}$$

Compared to the energy of first excitation in particle-in-a-box, this is much larger.

Hence, quantisation of levels is more important in this case.

Harmonic oscillator

Eigenvalues

$$\epsilon_v = (v + \frac{1}{2})h\nu$$
 v=0,1,2,...

$$\Delta\epsilon=\epsilon_1-\epsilon_0=h
u$$
 $pprox 5.7 imes 10^{-20}J$ For HCl with $\,
u=8.65 imes 10^{13}Hz$ $\gg \Delta\epsilon_{rot}$

Hence, quantisation of levels is more important in this case too.

Electrons

Consider a H atom as example

$$\epsilon_n = -\frac{13.6}{n^2} eV$$

$$\Delta \epsilon = \epsilon_2 - \epsilon_1 = \frac{13.6 \times 3}{4} eV$$

$$\approx 1.63 \times 10^{-18} J \qquad \nu = 8.65 \times 10^{13} Hz$$

$$\gg \Delta \epsilon_{vib}$$

The electronic energies and populations essentially remain constant due to this large gap. Thus, their contribution can be mostly ignored.

Many-electron systems

Consider a system of independent particles

$$\hat{H} = \hat{h}_1 + \hat{h}_2 + \hat{h}_3 + \dots$$

Separable Hamiltonian implies

$$E(n_1, n_2, n_3, ...) = \epsilon_{n_1} + \epsilon_{n_2} + \epsilon_{n_3} + ...$$

Where *n*'s are quantum numbers. In the present case, each quantum number corresponds to the level occupied by one of the *N* particles.

Thus, the microstate for a quantum system can be specified by specifying these quantum numbers $(n_1, n_2, n_3, ...)$.