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Lecture 29 Quantum Statistics of Identical Particles



Applications of Statistical
Mechanics
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Permutation symmetry of identical particles

Quantum statistics of identical particles

Fermi-Dirac Statistics

Bose-Einstein Statistics

Perfect Fermi Gas (Electrons in a metal)




Molecules and Solids

Normal modes of vibrations in a crystal

Debye model: In this model it is assumed that the frequencies in a crystal are
continuously distributed intherange 0 <v < v,,

The number of oscillators with frequencies between v to v + dv is taken to be

g(v)dv = (%> VA dy (see McQuarrie)
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assuming that they all correspond to an acoustic branch of lattice vibrations.
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Molecules and Solids

Normal modes of vibrations in a crystal
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Low temperatures

Hence, at low temperatures we have
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Applications

Permutation symmetry of identical particles

Permuting the coordinates of two identical particles in a system does not change any
measurable properties of its state

In quantum mechanics this translates to invariance of the probability density of the
system to permutation of the particles’ coordinates

U (x1,29,...)|* = [¥(x2, 21, ...)|? x; = (T, 04)
Spatial and spin
If P12 is the permutation operator then we can write variables

PoU(zy,29) = U(zo,21) and  PLY(z1,32) = ¥(z, 22)

Since P12 is a symmetry in the system we can consider the wavefunction to be an
eigenfunction of the operator

P12\IJ($1, ZL‘Q) — )\\If(fl, 332)



Applications

Permutation symmetry of identical particles

Using the previous relations we can easily show that A = -1 corresponding to symmetric
and antisymmetric wave functions, respectively.

Symmetric wave functions -> Bosons (photons, phonons, etc.)

Anti-symmetric wave functions -> Fermions (electrons, protons, etc.)

In the case of independent particles it can be shown that no two fermions can occupy
the same (single-particle) state.

However, bosons do not have such a restriction.



Applications

Quantum statistics of identical particles

We have seen that if there are N identical non-interacting particles in a system at
temperature T the canonical partition function is given by
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The restriction makes this sum hard to obtain. So we can try a different strategy.



Applications

Quantum statistics of identical particles

Consider the system to be open and able to exchange particles with a reservoir with
chemical potential u
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Each internal sum is restricted to yield a sum of particles equal to N.

However, since N itself can be anything, we can rewrite the above as the unrestricted
sum

Nmax M"max Mmax
Z nqi€4

ZQ(VaTMLL): S‘ S‘ S‘

ni1= OTLQ 0?13 0

Nmax 1S the maximum

nma:n . .
_ ni ,—Pnic; number of particles in
o H Z A each level

n;=0



Applications

Fermi-Dirac Statistics

For fermions nmax = 1. So we get

Average number of particles in the system is
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Applications

Bose-Einstein Statistics

For bosons Nmax =0Q. So we get
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Applications

Summary of Quantum Statistics

4+ Fermi-Dirac

— Bose-Einstein

Classical limit: High temperature or low density A\ — 0
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