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Molecules and Solids

Lecture Plan

Born-Oppenheimer Approximation

Normal modes of vibration: polyatomic molecules

Normal modes of vibration in crystals: Phonons

Debye theory of specific heat of crystals




Molecules and Solids

Born-Oppenheimer Approximation

Full Molecular Schrodinger Equation

HO ({ri, Ri}) = E® ({r, Rr})
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Clamped nuclear equation or Electronic Schrodinger equation

o () o (o) = 2 () v (fro))
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Born-Oppenheimer Approximation

B-O Approximation: Nuclei much more massive than electrons => we can treat nuclei as
static in the electronic problem

@, ({ris Ri}) ~ xu ((R1}) x W, ({73} {Br )

So that effectively,
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Potential energy surface (PES)

Nuclear motion is often treated classically unless the nuclei are light.
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Born-Oppenheimer Approximation

Potential energy surface for diatomic molecule
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(Rigid rotor) (Harmonic oscillator)

Ro is equilibrium bond length
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Born-Oppenheimer Approximation

Potential energy surface for polyatomic molecules

Ro is equilibrium configuration

1 O°E,
En(R)% —|—§YY AR[a ARJ@) <8R1aaRJ5>R_R

o L d
I,J o,

Can be transformed into normal mode coordinates (uncoupled harmonic oscillators).
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Born-Oppenheimer Approximation

Potential energy surface for polyatomic molecules
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Molecular vibrational partition function for polyatomic

So we can essentially treat the system as having SN-d harmonic oscillators

The canonical partition function then follows as
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Normal modes of vibrations in a crystal

In crystals N is very large. Additionally, we can expect that there may be many modes
differing very slightly in frequency.

In this case, it is more appropriate to use a density of states to integrate over all allowed

vibration frequencies.
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The density of states can be obtained by simple theories or numerical calculations.
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Normal modes of vibrations in a crystal

Debye model: In this model it is assumed that the frequencies in a crystal are
continuously distributed intherange 0 <v < v,,

The number of oscillators with frequencies between v to v + dv is taken to be

g(v)dv = (%> VA dy (see McQuarrie)
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assuming that they all correspond to an acoustic branch of lattice vibrations.
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