CHM 421/621 Statistical Mechanics

Lecture 23 Canonical Ensemble

Lecture Plan

Canonical Ensemble

Gibbs Ensemble Postulates

Entropy and pressure in canonical ensemble

Molecular Interpretation of work and heat

Canonical Ensemble

Gibbs Ensemble Postulates

This refers to the identification of averaged quantities in the ensemble with the corresponding thermodynamic property. In particular,

$$U \equiv \overline{E}$$

$$P \equiv \overline{P}$$

$$\mu \equiv \overline{\mu}$$

Where the averages are over the canonical ensemble at temperature T.

Canonical Ensemble

Entropy and pressure in the canonical ensemble

We have that

$$Z \equiv Z(\beta, V, N)$$

At constant N, we can write

$$d(\ln Z) = \left(\frac{\partial \ln Z}{\partial \beta}\right) d\beta + \left(\frac{\partial \ln Z}{\partial V}\right) dV$$
$$= -Ud\beta + \left(\frac{\partial \ln Z}{\partial V}\right) dV$$

Adding $d(\beta U)$ on both sides

$$d(\ln Z + \beta U) = \beta dU + \left(\frac{\partial \ln Z}{\partial V}\right) dV$$

Multiplying both sides by k_BT and rearranging

$$dU = k_B \ d(\ln Z + \beta U) - k_B T \left(\frac{\partial \ln Z}{\partial V}\right) dV$$

Comparing with

$$dU = TdS - PdV$$

We can write

$$P = k_B T \left(\frac{\partial \ln Z}{\partial V}\right)$$
$$dS = k_B d(\ln Z + \beta U)$$

Canonical Ensemble

Entropy and pressure in the canonical ensemble

The definition for pressure also makes sense from an averaging perspective

$$P = \frac{1}{Z} \sum_{k} P_{k} \exp(-\beta E_{k})$$

$$= \frac{1}{Z} \sum_{k} -\left(\frac{\partial E_{k}}{\partial V}\right) \exp(-\beta E_{k})$$

$$= \frac{1}{Z} \frac{1}{\beta} \frac{\partial}{\partial V} \sum_{k} \exp(-\beta E_{k})$$

$$= k_{B}T \left(\frac{\partial \ln Z}{\partial V}\right)$$

For an ideal gas this implies

$$P = k_B T \frac{N}{V}$$

This relation is just the mechanical equation of state for the systems

$$P = k_B T \left(\frac{\partial \ln Z}{\partial V}\right)$$
$$dS = k_B d(\ln Z + \beta U)$$

Canonical Ensemble

Entropy and pressure in the canonical ensemble

The entropy can obtained by integration

$$S = k_B \, \ln Z + rac{U}{T} + \, ext{constants}$$
 (N, other extensive parameters)

The constant term (in the absence of other extensive parameters) depends only on *N*. Since in practice only differences in *S* and *U* are actually measured, the constant can be set to 0. This is the convention we shall follow.

$$S = k_B \ln Z + \frac{U}{T}$$

This convention poses problems when we require extensivity of S. But not for dS. (See Appendix D in Atlee Jackson and pg. 46 of McQuarrie.)

Canonical Ensemble

Entropy and pressure in the canonical ensemble

Rearranging the equation for entropy we get

$$-k_B T \ln Z = U - T S \equiv F$$

Thus, we can now assign a thermodynamic meaning to the canonical partition function

$$F = -k_B T \ln Z$$

The definitions of entropy and pressure are now consistent with their thermodynamic analogues

$$S = -\left(\frac{\partial F}{\partial T}\right)_{V,N} \qquad P = -\left(\frac{\partial F}{\partial V}\right)_{T,N}$$

Canonical Ensemble

Molecular interpretation of work and heat

Consider the function $f = \ln Z \equiv f(\beta, \{E_k\})$

$$df = \left(\frac{\partial f}{\partial \beta}\right)_{\{E_k\}} d\beta + \sum_k \left(\frac{\partial f}{\partial E_k}\right)_{\beta} dE_k$$

$$= -\overline{E} d\beta + \frac{1}{Z} \sum_k -\beta \exp(-\beta E_k) dE_k$$

$$= -\overline{E} d\beta - \beta \sum_k P(E_k) dE_k$$

This can be written as

$$d(f + \beta \overline{E}) = \beta \left(d\overline{E} - \sum_{k} P(E_k) dE_k \right) = \beta \sum_{k} E_k dP(E_k)$$

Canonical Ensemble

Molecular interpretation of work and heat

Consider carrying out two processes on the ensemble:

- 1. Changing volume of all systems equally by dV, and in turn changing the E_k 's for all systems alike.
- 2. Changing the temperature of the ensemble (by switching to another heat reservoir with temperature T + dT)

The work done on any system in changing its energy from E_j to E_j+dE_j (through the volume change) is dE_j .

Therefore the ensemble averaged reversible work done in the volume change process is

$$\delta W_{rev} = \sum_{k} P(E_k) dE_k$$

Reversible work is done on a canonical ensemble when the energies of the states of the systems are changed infinitesimally without changing their *populations* (or probabilities).

Canonical Ensemble

Molecular interpretation of work and heat

Since $d\overline{E}$ is the average change in total energy we must have that

$$\delta Q_{rev} = d\overline{E} - \delta W_{rev}$$

$$= d\overline{E} - \sum_{k} P(E_k) dE_k$$

$$= \frac{1}{\beta} d(f + \beta \overline{E})$$

$$= \sum_{k} E_k dP(E_k)$$

Reversible heat supplied to a canonical ensemble alters the *populations* (probabilities) of the states of the systems without changing their energies.

Canonical Ensemble

Summary of thermodynamic relations

$$U = \overline{E} = k_B T^2 \left(\frac{\partial \ln Z}{\partial T}\right)_{V,N}$$

$$P = k_B T \left(\frac{\partial \ln Z}{\partial V}\right)_{N,T}$$

$$S = k_B T \left(\frac{\partial \ln Z}{\partial T}\right)_{V,N} + k_B \ln Z$$

$$F = -k_B T \ln Z(N, V, T)$$