CHM 421/621 Statistical Mechanics

Lecture 22 Canonical Ensemble

Formalisms of Statistical Mechanics

Lecture Plan

Basic Postulates

Counting microstates in an ideal gas

Boltzmann equation for entropy

Microcanonical Ensemble

Canonical Ensemble

Canonical Ensemble

We are generally interested not in isolated systems but those in contact with a thermal (or other) reservoir, capable of exchanging energy with one another.

An ensemble of such (identically prepared) systems at the same temperature (*T*) is called a **canonical ensemble**.

The total energy of the ensemble with reservoir is fixed: $U_{tot} = \mathcal{E} + U_r$

=> various microstates where \mathcal{E} and U_r are different, keeping U_{tot} constant, are possible.

Even for a given \mathcal{E} there are multiple ways of distributing the energy across the members of the ensemble. We are actually interested in this distribution.

Canonical Ensemble

What is the probability that a system in such an ensemble is in a particular microstate k with energy E_k ?

From the basic postulate we can see that the probability must depend on the energy of the microstate only. i.e.

Discrete
$$P_k \equiv P(E_k)$$
 Classical $f(\{\vec{r}, \vec{p}\}) \equiv f(E(\{\vec{r}, \vec{p}\})$

This can also be understood in terms of grouping the systems into various **micro-canonical ensembles** (hence the name).

Canonical Ensemble

What is the probability that a system in such an ensemble is in a particular microstate k with energy E_k ?

Joint probability of combined system A+B

$$P_{A+B}(E_{A+B}) \approx P_{A+B}(E_A + E_B)$$
$$= P_A(E_A) \times P_B(E_B)$$

since E_A and E_B are independent events.

Now,
$$\frac{\partial P_{A+B}(E_{A+B})}{\partial E_{A}} = \frac{\partial P_{A+B}(E_{A+B})}{\partial E_{B}}$$
$$\implies P'_{A}(E_{A})P_{B}(E_{B}) = P_{A}(E_{A})P'_{B}(E_{B})$$
$$\implies \frac{P'(E)}{P(E)} = \text{constant}$$

Since A and B were arbitrarily chosen.

Canonical Ensemble

What is the probability that a system in such an ensemble is in a particular microstate k with energy E_k ?

$$\frac{dP(E_k)}{P(E_k)} = C \times dE$$

$$\implies \ln P(E_k) = C \ E_k + \ln D$$

$$\implies P(E_k) = D \ \exp(C \ E_k)$$

$$D \ \text{is a constant of integration}$$

C is a constant

$$\sum_{k} P(E_k) = 1$$

$$\implies D = Z^{-1} = 1/\sum_{k} \exp(CE_k)$$

Z is called the **canonical partition function**.

Canonical Ensemble

What is the probability that a system in such an ensemble is in a particular microstate k with energy E_k ?

For a discrete (quantum) system

$$P(E_k) = rac{1}{Z} \exp(-eta E_k)$$

$$Z = \sum_k \exp(-eta E_k)$$
 (Setting $C = -eta$)

For a continuous (classical) system

$$f(E(\{\vec{r}, \vec{p}\})) = \frac{1}{Z} \exp(-\beta E(\{\vec{r}, \vec{p}\}))$$

$$Z = A \int d^{3N}r \int d^{3N}p \, \exp(-\beta E(\{\vec{r}, \vec{p}\}))$$

$$A = \frac{1}{N!h^{3N}}$$

 β must be related to reservoir only!

Canonical Ensemble

Computing averages

$$U \equiv \overline{E} = \frac{1}{Z} \sum_{k} E_k \exp(-\beta E_k)$$

For classical systems we can write

$$U \equiv \overline{E} = \frac{1}{Z h^{3N}} \int d^{3N}x \int d^{3N}p \ E \exp(-\beta E)$$

In practice the factor is immaterial as it cancels out (except for the indistinguishability). So we can ignore it by setting it to 1 in the appropriate units.

$$U \equiv \overline{E} = \frac{1}{Z} \int d^{3N}x \int d^{3N}p \ E \ \exp(-\beta E)$$

Canonical Ensemble

Computing averages

In either case a simplification to the energy expression is

$$U = -\frac{\partial \ln Z}{\partial \beta}$$

Canonical Ensemble

Ideal gas at finite temperature T

$$E = \sum_{i=1}^{N} p_i^2 / 2m$$

$$Z(\beta, V, N) = \int d^{3N}x \int d^{3N}p \, \exp(-\beta \sum_{i=1}^{N} p_i^2 / 2m)$$
$$= \left(\int d^3x \int d^3p \, \exp(-\beta \frac{p^2}{2m}) \right)^N$$
$$\equiv (z)^N$$

where z is called the molecular partition function.

$$z = V \left(\frac{2\pi m}{\beta}\right)^{\frac{3}{2}} \implies u = U/N = -\frac{\partial \ln z}{\partial \beta}$$
$$= \frac{3}{2\beta}$$

Comparing with the known result of $u = \frac{3}{2}k_BT$

We have
$$\beta = \frac{1}{k_B T}$$