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Ensembles

Canonical Ensemble

We are generally interested not in isolated systems but those in contact with
a thermal (or other) reservoir, capable of exchanging energy with one another.

An ensemble of such (identically prepared)
systems at the same temperature (7) is called Reservoir T
a canonical ensemble.

The total energy of the ensemble with
reservoir is fixed: U, = £ + U,

=> various microstates where £ and U, are
different, keeping Uit constant, are possible.

Even for a given & there are multiple ways of “ “ “
distributing the energy across the members
of the ensemble. We are actually interested in
this distribution.
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Canonical Ensemble

What is the probability that a system in such an ensemble is in a particular microstate k
with energy Ex?

From the basic postulate we can see that the Reservoir T
probability must depend on the energy of the
microstate only. I.e.

Discrete P, = P(Ey) “ “ “
Classical f({7,p})
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This can also be understood in terms of “ “ “
grouping the systems into various micro-
canonical ensembles (hence the name).
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Canonical Ensemble

What is the probability that a system in such an ensemble is in a particular microstate k
with energy Ex?

Joint probability of combined system A+B

Paip(Ea+) = Parp(Ea+ Ep)
= PA(EA) X PB(EB)

Reservoir T

since Ea and Eg are independent events. “ A “ “
Now, OParp(Eayp)  OPaip(EayB)
OF 4 OFE g
= P)(Ea)Pp(EB) = Pa(Ea)Pp(EB)
— P/(E) = constant “ “ “
P(E)

Since A and B were arbitrarily chosen.
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Canonical Ensemble

What is the probability that a system in such an ensemble is in a particular microstate k
with energy Ex?

dP(Ev) _ . 15 C is a constant Reservoir T
P(Ey)

— InP(E,)=C Er +InD D is a constant of
—|P(E,) = D exp(C Ey) integration “ n “ “
Y P(Ey) =1
k

— D=7 = 1/Zexp(CEk)
k

Z Is called the canonical partition function.
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Canonical Ensemble

What is the probability that a system in such an ensemble is in a particular microstate k
with energy Ex?

Reservoir T

For a discrete (Quantum) system

P(Ey) = exp(~HEy)

Z = exp(—BEx) “ A “ “
: (Setting C = —f)

For a continuous (classical) system

FEUF5Y) = wexp(~BE{F 7 “ “ “

Z
7 =A /d?’Nr /d3Np exp(—BE{7,p})

1
- NIp3N

A £ must be related to reservoir only!
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Canonical Ensemble

Computing averages

U

— 1
— E Z EkeXp(—ﬁEk)
k
For classical systems we can write

U=F = - th /d3N /dSNp E exp(—BE)

In practice the factor is immaterial as it cancels out (except for the indistinguishability).
So we can ignore it by setting it to 1 in the appropriate units.

— 1
U=F= E/dSNx/dSNp E exp(—pFE)
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Canonical Ensemble

Computing averages

In either case a simplification to the energy expression is

OlnZ

U = 90
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Canonical Ensemble

|deal gas at finite temperature T

N
E=Y p;/2m
1=1

N
ZB.VN) = [ Vo [ ap exp(-5 Yot /2m)
=1

— (/ d3a;/d3p exp(—ﬂ%))]\[
= (2)"

where z is called the molecular partition function. _ ,
Comparing with the known

9rm.\ 2 B __(91I12 result of 3
Z:V<7>:U_U/N_ 98 =gt

23 We have B = kB—T



