CHM 421/621 Statistical Mechanics

Lecture 18 Uncertainty and Entropy

Lecture Plan

Basic Postulates

Counting microstates in an ideal gas

Boltzmann equation for entropy

Basic Postulates

Postulate 1:

The physical properties of a macroscopic system depend only on the average behaviour of all the atoms in that system.

Or

All macroscopic properties of a system are averages of some microscopic behaviour within the system

Basic Postulates

Postulate 2:

All micro states of a system that have the same energy are assumed to be equally probable.

Also called the postulate of equal a priori probability.

Basic Postulates

Justification:

In a closed system we can show that the energy does not change during dynamics Classically,

$$\frac{dH}{dt} = \frac{\partial H}{\partial t} + \sum_{i=1}^{N} \frac{\partial H}{\partial p_i} \dot{p}_i + \frac{\partial H}{\partial q_i} \dot{q}_i$$
$$= \frac{\partial H}{\partial t} + \sum_{i=1}^{N} -\dot{q}_i \dot{p}_i + \dot{p}_i \dot{q}_i = 0$$

Where $H(p_i, q_i)$ is the system Hamiltonian without explicit time-dependence.

Quantum mechanically the same holds for <H> through Ehrenfest theorem.

Probability distribution

The 2nd postulate means that if we know the total number of allowed microstates in a closed system we can determine the probability of each.

Let this number be $\Omega(U, V, N)$

Then the probability of each is $\ 1/\Omega(U,V,N)$.

Let us perform such a counting operation.

Counting microstates in an ideal gas

Consider a system with N non-interacting atoms moving freely in a closed container of volume V and having a total energy U.

The Hamiltonian is given by

$$H(\{\mathbf{p}_i(t), \mathbf{r}_i(t)\}) = \sum_{i=1}^{N} \frac{1}{2m} p_i^2$$

The number of microstates with energy *U* is given by

of atoms

$$\Omega(U,V,N) = \frac{1}{N!} \times \frac{1}{h^{3N}} \int d^{3N}q \int d^{3N}p \; \delta \left(\sum_{j=1}^N p_j^2/2m - U\right)$$
 Accounts for indistinguishability
$$\begin{array}{c} \text{Accounts for} \\ \text{Quantisation} \end{array}$$

Counting microstates in an ideal gas

Integrating over the spatial coordinates and by a transformation of variables we can write

$$\Omega(U, V, N) = \frac{1}{N!} \times \left(\frac{V(2m)^{\frac{3}{2}}}{h^3}\right)^N \int d^{3N}y \,\,\delta\left(\sum_{j=1}^N y_j^2 - U\right)$$

This is just an integral over the surface of a 3N-dimensional sphere of radius \sqrt{U}

We can show that (See these links for a nice explanation)

$$\Omega(U, V, N) = \frac{1}{N! \ \Gamma(\frac{3N}{2})} \left(\frac{V(2m\pi)^{\frac{3}{2}}}{h^3} \right)^N U^{\frac{3N-1}{2}}$$

$$\approx \frac{1}{N! \left(\frac{3N}{2}\right)!} \left[\frac{V}{h^3} \left(2\pi mU\right)^{\frac{3}{2}} \right]^N \qquad (N \to \infty)$$

Counting microstates in an ideal gas

So for large number of atoms we have

$$\Omega(U, V, N) = \frac{1}{N! \ (\frac{3N}{2})!} \left[\frac{V}{h^3} (2\pi m U)^{\frac{3}{2}} \right]^N$$

What is the uncertainty in the distribution?

$$H = \ln \Omega(U, V, N)$$

$$= N \ln \left[\frac{V}{h^3} \left(\frac{4\pi mU}{3N} \right)^{\frac{3}{2}} \right] + \frac{3}{2} N - \ln N!$$

To simplify we can use Stirling's approximation (see Atkins or McQuarrie, for example).

$$ln N! \approx N ln N - N \qquad (N \to \infty)$$