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Basic Postulates

Postulate 1:
The physical properties of a macroscopic system depend only on the average behaviour

of all the atoms in that system.

Or

All macroscopic properties of a system are averages of some microscopic behaviour
within the system
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Postulate 2:
All micro states of a system that have the same energy are assumed to be equally

probable.

Also called the postulate of equal a priori probability.
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Justification:

In a closed system we can show that the energy does not change during dynamics

Classically,
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Where H(pi,qg;) is the system Hamiltonian without explicit time-dependence.

Quantum mechanically the same holds for <H> through Ehrenfest theorem.
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Probability distribution
The 2nd postulate means that if we know the total number of allowed
microstates in a closed system we can determine the probability of each.

Let this number be (U, V, N)

Then the probability of eachis 1/Q(U, V. N) .

Let us perform such a counting operation.
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Counting microstates in an ideal gas

Consider a system with N non-interacting atoms moving freely in a closed
container of volume V and having a total energy U.

The Hamiltonian is given by

1
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The number of microstates with energy U is given by
1

TN

Accounts for Phase-space
indistinguishability Quantisation
of atoms
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Integrating over the spatial coordinates and by a transformation of variables we can write

Q(U,V,N) = % X (V(i?) ) /dSNy 5 (ny — U)

This is just an integral over the surface of a 3N-dimensional sphere of radius vU

V][V

We can show that  (See these links for a nice explanation)
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https://www.youtube.com/watch?v=h7HcPO2sENE
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So for large number of atoms we have
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What is the uncertainty in the distribution?
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To simplify we can use Stirling’s approximation (see Atkins or McQuarrie, for example).
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