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Statistical Mechanics

Lecture 17 Average, Variance and Uncertainty



Introduction and Review

Lecture Plan

Review of probability theory (ctd.)

and variances under a distribution
Uncertainty



Averages and Variances

Average
Consider a property g(x) that depends on
the variable (event) x.

We can compute an average value of g over
a series of measurements of x as

1 Nempt
g = g\&;
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Or, if we know the probability distribution
P(x), as

5= g@)P@x) o  g= / g(2)f(z) da

Discrete Continuous



Averages and Variances

Average

Consider the following distribution function
for events

e o Gaussian or normal distribution
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Averages and Variances

Average
Consider the following distribution function
for events

- 2 Gaussian distribution
— ,/_ _ —o <<
f(z) “AD ( oz = o) ) 0= & S +00 (Off-centred / displaced)
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However, note that



Averages and Variances

Variance

Averages are not always the only important property to be extracted from a
distribution.

We might also want to know how much the result of a particular
experiment would differ from the expected average.

We can use the variance for this

A z° =

Nea:pt

Or, if we know the probability distribution P(x), as
N

As?=S@-5?2P@) or Aa’- /(:r; _2)2f(z) da
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Discrete Continuous



Averages and Variances

Variance

Note that
N

var(x) = A 2® =Y (v —2)* P(z) = a2 — 7’

T

Square root of variance is called the standard deviation

o(x) = +/var(x)

What is the standard deviation in the results in the case of rolling a single
die?

Answer: /35/12




Averages and Variances

Normalised average value

The value of std. deviation helps in understanding the meaningfulness of
an average and the spread of a distribution.

To quantify this we can define a normalised average value of x:

X

If nav(xz) < 1 then the average has no significance

|f nav(x) > 1 then the average is significant and the
deviations from average are quite small

Most probable value

((9f(£13)> _ 0 T, is called the mode of the distribution
ox )



Uncertainty

Motivation

Rolling a true die vs. biased die

Case |. All numbers equally likely Pi = 1/6 (Most uncertain)
Case ll. Pi=1/8 (i=1,5) and Ps=3/8 (Lesser uncertainty than |)
Case lll. Pi= 0 (i=1,5) and Pe=1 (Least uncertainty)

Case IV. Pi=1/8 (i=1,2,4,5,6) and P3=3/8 (Same as Il)

Now consider rolling two dice, one true and one biased as in case lll above.

The uncertainty in this case is the same as the case I. This can also be thought of as a
sum of the individual uncertainties.

In the general case, the total uncertainty is at least that of either case. So the additivity of
uncertainties of independent experiments is an appealing property to require.



Uncertainty

Desirable Properties

1.

N

The uncertainty of an experiment consisting of two independent
experiments should be a sum their individual uncertainties.

The uncertainty should depend on probabilities of all events.

The uncertainty should depend on the probabilities in a symmetric
fashion.

The least uncertainty should occur when all but one event have
probability 0. The maximum uncertainty should occur when all events
have equal probability.




Uncertainty and information

A discrete example
Rolling a die assuming to be true:

1
H =6 x e In(6) =1In(6) = 1.79

Suppose that before the die was rolled you received information that the
die is biased towards 6 with Ps = 3/8 (as in Case II).

The uncertainty is then

H=5x % « In(8) + g % (In(8) — In(3)) = 1.67

The uncertainty reduces because of the new information obtained about
the game.

We can say that you received 0.12 units of information.



Uncertainty and information

A continuous example

A particle is initially confined along aline 0 < x < 2

If f(x) is the distribution function of the particle, then
2
/f(az) de =1
0
If we know nothing about the location then it is safe to assume all positions
are equally likely. Which implies,
1
Tr) = —
flx) = 5

So the uncertainty is



Uncertainty and information

A continuous example

If the confinement is relaxed a bit to 0<x<5hH

Then, by the same calculation, the uncertainty becomes

H[f) = In(5)

We can say that by relaxing the confinement we lose some information
about the particle’s position. The amount of information lost is

(3



Uncertainty and information

The uncertainty is a reflection of the information we possess about the system. If
we are told that an event A has occurred then it would affect our expectation of
probabilities of the results. This can be captured through the conditional probability

H(A) = — Z P(i|A)InP(i|A)

E.g., Someone tells us that a die only rolls numbers up to 4

H(i<4)= ZP ili < 4)In P(ili <4)



