CHM 325 Assignment 5 $\,$

November 7, 2022

Due on 14^{th} November, 2022.

1. Check whether the functions given below satisfy the differential equations given on their right.

(i)
$$y = x^2 + cx$$
 $x\frac{dx}{dy} = x^2 + y$
(ii) $c_1e^{2x} + c_2e^{-3x}$ $\frac{d^2y}{dx^2} + \frac{dy}{dx} - 6yx^2 = 0$
(iii) $y = cx + c^2$ $y = x\frac{dy}{dx} + \left(\frac{dy}{dx}\right)^2$

2. Solve the following differential equations by a suitable approach.

(i)
$$\frac{dy}{dx} = -\frac{y}{x-1}$$

(ii) $a\left(x\frac{dy}{dx} + 2y\right) = xy\frac{dy}{dx}$
(iii) $x^2\frac{dy}{dx} = y^2\frac{dx}{dy}$

3. Newton's law of cooling states the rate at which the temperature of a hot body having temperature $T > T_0$ at time t drops to reach the surrounding temperature T_0 is given by

$$\frac{dT}{T} = k(T - T_0)$$

where k is a constant and T is in degrees Celcius. A copper pellet initially at 200°C is dropped into a large bucket of water at 20°C. After 6 minutes, the temperature of the pellet is 100°C. How much longer will it take for the pellet to cool down to 25°C. Assume that the temperature of water does not change during the cooling.

4. Determine which of the following two differential equations is exact and solve it. (i) $xdy + ydx = xy^3dx$

(i)
$$xdy + ydx = xy^{3}d$$

(ii) $\frac{dy}{dx} = \frac{x - y}{x + y}$

- 5. A curve is described such that the intercept of its tangent at any point (x, y) with the y axis is equal to $2xy^2$. Determine the curve y(x).
- 6. Solve the differential equation

$$\frac{dy}{dx} = \frac{2x+y-4}{x-y+1}$$

using the substitution $x = u + x_0$ and $y = v + y_0$, where both the numerator and denominator go to zero at $x = x_0, y = y_0$.

7. Find the general solutions of

(i)
$$(x^2 + y^2)\frac{dy}{dx} = 1$$

(ii) $\frac{dx}{dt} = 3x - 5\sin(t)$
(iii) $x\frac{dy}{dx} + y = 3x^3y^2$

1

8. Consider the chemical reaction $A \rightleftharpoons B$. The rate equation of the reaction can be written as

$$\frac{dA}{dt} = -k_1A + k_2B$$

where k_1 and k_2 are rate constants. If $A(0) = A_0$ and $B(0) = B_0$, solve the equation for A(t) and B(t).

9. Check whether e^x , sinh x and cosh x are linearly independent.

10. Find the general solutions of

(i)
$$y''(x) - y'(x) - 2y(x) = 0$$

(ii) $y''(x) + 2y'(x) + 4y(x) = 0$
(iii) $y'''(x) - 2y''(x) - y'(x) + 2y(x) = 0$

11. The motion of a 1-dimensional simple harmonic oscillator subjected to frictional damping is given by

$$\frac{d^2x}{dt^2} + \gamma \frac{dx}{dt} + \omega^2 x(t) = 0$$

where ω is the fundamental angular frequency and γ is the frictional coefficient. Given that at t = 0 the oscillator is stretched by x_0 and starts from rest, solve the equation to obtain x(t). Sketch the behaviour of x/x_0 as a function of $\omega_0 t$ for (a) $\gamma = 0$, (b) $0 < \gamma < 2\omega_0$, (c) $\gamma = 2\omega$, and (d) $\gamma > 2\omega_0$.