CHM 325 Assignment 3

September 15, 2022

Due on 29^{th} September, 2022.

- 1. Use the comparison test to show that $\int_{1}^{\infty} \frac{\sqrt{x}}{1+x} dx$ converges.
- 2. Show that $\int_{0}^{\infty} t^n e^{-xt} dt = \frac{n!}{x^{n+1}}$.

3. Show that the integral $\int_{0}^{\infty} \frac{\sin x}{x} dx$ converges and compute it. Hint: Use the result for $\int_{0}^{\infty} e^{-xt} dt$, for the second part of the question.

- 4. Compute the integral $\int_{-\infty}^{\infty} \frac{\sin^2(ax)}{x^2} dx$, where a > 0.
- 5. Compute the integral $\int_{0}^{\infty} e^{-x^{2}} \cos(ax) dx$.
- 6. Show that $\int_{0}^{\infty} e^{ax} \cos(x) dx$ is a continuous function of a for a > 0.
- 7. Show that $I(a,b) = \int_{0}^{\infty} e^{-a^2x^2 b^2x^2} dx = \frac{\pi^{\frac{1}{2}}}{2a} e^{-2ab}.$
- 8. Evaluate
 - (a) $\int_{0}^{\infty} e^{-au} u^{\frac{3}{2}} du$

- (b) $3\Gamma\left(\frac{5}{4}\right)\Gamma\left(\frac{1}{4}\right)$ (c) $\int_{0}^{1} (\ln x)^{n} dx$
- 9. Evaluate $\int_{0}^{\infty} x^m e^{-x^n} dx$, where *m* and *n* are positive integers, in terms of a gamma function.
- 10. Show that $\int_{-\infty}^{\infty} f(x)\delta(g(x)) dx = \sum_{i} \frac{f(x_i)}{|g'(x_i)|}$, where f, g are continuous functions and x_i are the roots of g(x).