CHM 325 Assignment 1

August 21, 2022

Due on 30^{th} Aug, 2022.

1. If y is expected to a real-valued function of x, then determine the maximum domains of y(x) for the following definitions of the function:

(a)
$$y = \sqrt{16 - x^2}$$

(b)
$$y = \frac{1}{x^2 + 8}$$

(c)
$$y = \ln x$$

(d)
$$y = \frac{1}{x-1}$$

- 2. Which of the following functions is periodic? What are their periods?
 - (a) $\tan 2x$
 - (b) $|\cos x|$
 - (c) $(\sin x)/x$
- 3. Find the following limits

(a)
$$\lim_{x \to 0} \frac{\sin 3x}{x}$$

(b)
$$\lim_{x \to 0} \frac{\sin 2x}{\sin x}$$

(c)
$$\lim_{x \to 1} \frac{1 + \cos \pi x}{\tan^2 \pi x}$$

(d)
$$\lim_{x \to 0} \frac{\sqrt{x+2} - \sqrt{2}}{x}$$

4. Check whether the function $f(x) = (x^4 + x^3 - 3x + 2x - 1)/(x - 1)$ is continuous at x = 1.

- 5. Show that the following equations have at least one solution :
 - (a) $2x^4 + 2x + 1 = 0$ between -1 and 1.
 - (b) $\cos x = x$ betweem 0 and $\pi/2$.
- 6. Using ϵ - δ notation prove that $f(x) = x^2$ is continuous at x = 2.
- 7. The function $f(x) = (x^3 1)/(x^2 1)$ is not defined at x = 1. Is the point x = 1 a removable discontinuity? What value must f(x) be assigned at x = 1 to make it continuous there?
- 8. Find α and β such that f(x) given below is continuous at $0 < x < 2\pi$.

$$f(x) = \begin{cases} -\sin x & 0 < x < \pi/2 \\ \alpha \sin x + \beta & \pi/2 < x < 3\pi/2 \\ \left(x - \frac{3\pi}{2}\right)^2 & 3\pi/2 < x < 2\pi \end{cases}$$
 (1)