General Relativity - 2017

Indian Institute of Science Education and Research Bhopal

Assignment 5

1. Lightlike geodesic equations in Schwarzschild spacetime is given by,

$$
\begin{aligned}
\frac{d}{d \lambda}\left[\left(1-\frac{2 G M}{c^{2} r}\right) \frac{d t}{d \lambda}\right] & =0, \\
\frac{d}{d \lambda}\left[r^{2} \frac{d \phi}{d \lambda}\right] & =0, \\
\left(1-\frac{2 G M}{c^{2} r}\right) c^{2}\left(\frac{d t}{d \lambda}\right)^{2}-\left(1-\frac{2 G M}{c^{2} r}\right)^{-1}\left(\frac{d r}{d \lambda}\right)^{2}-r^{2}\left(\frac{d \phi}{d \lambda}\right)^{2} & =0 .
\end{aligned}
$$

(a) Replacing $r=1 / u$ show that the a photon trajectory can be described by

$$
\frac{d^{2} u}{d \phi^{2}}+u=\frac{3 G M}{c^{2}} u^{2} .
$$

(b) Show that for $M=0$, the solution to this equation is given by $b=r \sin (\phi)$ for some constant b.
(c) Treating $3 G M / c^{2}$ to be very small, show that the perturbed solution is given by

$$
u=\frac{1}{b} \sin \phi+\frac{3 G M}{2 b^{2} c^{2}}\left(1+\frac{1}{3} \cos 2 \phi\right)
$$

(d) Hence show that the total bending of light around a massive object of mass M is given by $\frac{4 G M}{b c^{2}}$. What is the minimum value of b ? The Sun being the massive object, the deflection is around $1.75^{\prime \prime}$.
2. (a) Define $\bar{t}=t+2 m \ln (r-2 m)$. Here $m=G M / c^{2}$. Find out the metric in \bar{t}, r coordinate system.
(b) Is the metric regular at $r=2 m$?
(c) Define $v=\bar{t}+r / c$, and find the metric in (v, r) coordinate system.
(d)Find out the light like geodesics in this coordinate system, and draw space time diagram in (\bar{t}, r) plane. Draw light cones in this plane.

