General Relativity - 2017

Indian Institute of Science Education and Research Bhopal

Assignment 4

1. For non relativistic system $\left|T_{i j}\right| \ll\left|T_{00}\right|$. (a) In this case, show $R_{i j} \simeq \frac{1}{2} g_{i j} R$, and $R=2 R_{00}$. It leads us to $G_{00} \simeq 2 R_{00}$. (b) Now, in the weak and static field limit, show that $R_{00}=\frac{1}{2} \nabla^{2} g_{00}$. With all these information, write down the weak-field limit of the Einstein's equations.
2. Consider the three dimensional space with the line element

$$
d s^{2}=(1-2 M / r)^{-1} d r^{2}+r^{2} d \Omega^{2} .
$$

Calculate the radial distance between the sphere at $r=2 M$ and the sphere at $r=3 M$. (b) Calculate the spatial volume between the two spheres in part (a).
3. A static, spherically symmetric spacetime must have a metric of the form

$$
d s^{2}=-f(r) d t^{2}+h(r) d r^{2}+r^{2} d \Omega^{2} .
$$

(a) Show that $R_{t t}$ has the following form

$$
R_{t t}=\frac{f^{\prime \prime}}{2 h}-\frac{f^{\prime}}{4 h}\left(\frac{f^{\prime}}{f}+\frac{h^{\prime}}{h}\right)+\frac{f^{\prime}}{r h}
$$

(b) Let $h=f^{-1}$. Show that $R_{r t t r}=\frac{1}{2} f^{\prime \prime}(r)=-\frac{2 M}{r}$ for $f=\left(1-\frac{2 M}{r}\right)$. How should you interpret your result? Do give special attention to $r \rightarrow \infty, r=2 M$, and $r=0$. There are also other non-zero components of the the Riemann tensor.
4. Let the spacetime metric has the following form (this describes metric of our universe):

$$
d s^{2}=-d t^{2}+a(t)^{2}\left(d \chi^{2}+\sin ^{2} \chi d \Omega^{2}\right), 0 \leq \chi \leq \pi
$$

(a) Find the form of the 4 -velocity for a photon propagating in the χ-direction. This should involve one unknown function. (b) Let $k^{\alpha}=\nu_{0}\left(1 / a, 1 / a^{2}, 0,0\right)$. Check that the geodesic equation $k^{\beta} D_{\beta} k^{\alpha}=0$ is satisfied for $\alpha=t$.

