General Relativity - 2017

Indian Institute of Science Education and Research Bhopal

Assignment 3

1. Write down the equations of motion of a particle (in polar coordinates) moving in a central force. From these equations, show how the gravitational force term can be reinterpreted in terms of a curved geometry without any gravitational force. Try to guess a metric (not necessarily a solution of the Einstein's equation) that can provide similar geodesic equations.
2. When a vector V_{a} is parallel transported along a geodesics, show that the angle subtended by the vector and the geodesics (i.e the tangent of the geodesics) is unchanged.
3. For a diagonal metric, prove that the Christoffel symbols are given by

$$
\Gamma_{\nu \lambda}^{\mu}=0, \quad \Gamma_{\lambda \lambda}^{\mu}=-\frac{1}{2 g_{\mu \nu}} \frac{\partial g_{\lambda \lambda}}{\partial x^{\mu}}, \quad \Gamma_{\mu \lambda}^{\mu}=\frac{\partial}{\partial x^{\lambda}}\left(\ln \left(\sqrt{\left|g_{\mu \mu}\right|}\right)\right), \quad \gamma_{\mu \mu}^{\mu}=\frac{\partial}{\partial x^{\mu}}\left(\ln \left(\sqrt{\left|g_{\mu \mu}\right|}\right)\right)
$$

4. (a) Let u^{b} be the 4 -velocity of a particle and a^{b} its acceleration 4 -vector. Show that $u^{b} \nabla_{a} u_{b}=0$ and $u^{b} a_{b}=0$.
(b) Show that the tensor defined by $F_{a b}=\nabla_{a} A_{b}-\nabla_{b} A_{a}$ can also be written as $F_{a b}=$ $\partial_{a} A_{b}-\partial_{b} A_{a}$, i.e that the Christoffel symbols drop out.
(c) The three dimensional curl of a vector \vec{B} is defined by $(\vec{\nabla} \times \vec{B})^{i}=\epsilon^{i j k} B_{k}$. Show that this can also be written as $(\vec{\nabla} \times \vec{B})^{i}=\epsilon^{i j k} \partial_{j} B_{k}$.
5. The flat spatial metric in spherical coordinates is given by $d s^{2}=d r^{2}+r^{2} d \Omega^{2}$ where $d \Omega^{2}=d \theta^{2}+\sin ^{2} \theta d \phi^{2}$. Write out the Laplacian $\nabla^{2} f=g^{i j} \nabla_{i} \nabla_{j} f=\nabla_{i} \nabla^{j} f$ in terms of the partial derivatives acting on f.
6. Show explicitly that $\nabla_{a} g_{b c}=0$.
7. Show that with the following transformation $\left.x^{\prime a}=x^{a}-\frac{1}{2} \Gamma_{b c}^{a} \right\rvert\,{ }_{o} x^{b} x^{c}$, you can always make $\Gamma_{b c}^{a}$ to be zero locally.
8. Compute all the non vanishing components of the Riemann tensor $R_{i j k l}(i, j, k, l=\theta, \phi)$ for the 2 -sphere metric where a is the radius of the sphere. Show that the Ricci tensor is given by $R_{i j}=g_{i j} / a^{2}$. Find also the scalar curvature.
9. Show that $D_{a} F^{a b}=\frac{1}{\sqrt{-g}} \partial a\left(\sqrt{-g} F^{a b}\right)$
10. If the Riemann curvature is isotropic, the Riemann curvature tensor can be written as

$$
R_{a b c d}=K\left(g_{a c} g_{b d}-g_{a d} g_{b c}\right) .
$$

Use the Bianchi identities to show that K must be a constant. (Schur's theorem). Find Ricci scalar in this case.
11. Show that the Ricci tensor is a symmetric tensor.

