
1 Why Should We Study Group Theory?

Group theory can be developed, and was developed, as an abstract mathematical topic.
However, we are not mathematicians. We plan to use group theory only as much as is needed
for physics purpose. For this, we focus more on physics aspects than on mathematical rigour.
All complicated proofs have been carefully avoided, but you should consult the reference
books if you are interested.

Almost every time, we have to use some symmetry property of the system under study to
get more information (like the equations of motion, or the energy eigenfunctions) about it.
For example, if the potential in the Schrödinger equation is symmetric under the exchange
x → −x (this is known as a parity transformation), even without solving, we can say that
the wavefunctions are bound to have a definite parity. Group theory is nothing but a mathe-
matical way to study such symmetries. The symmetry can be discrete (e.g., reflection about
some axis) or continuous (e.g., rotation). Thus, we need to study both discrete and contin-
uous groups. The former is used more in solid state physics, particularly in crystallographic
studies, while the latter is used exhaustively in quantum mechanics, quantum field theory,
and nuclear and particle physics.

2 What is a Group?

A group G is a set of discrete elements a, b, · · ·x alongwith a group operator 1, which we will
denote by �, with the following properties:

• Closure: For any two elements a, b in G, a � b must also be in G. We will try to
avoid the mathematical symbols as far as practicable, but let me tell you that in some
texts this is written as ∀a, b ∈ G, a � b ∈ G. The symbol ∀ is a shorthand for “for
all”. Another commonly used symbol is ∃: ∃a ∈ G means “there exists an a in G such
that”.

• Associativity: For any three elements a, b, c in G,

a� (b� c) = (a� b)� c, (1)

i.e., the order of the operation is not important. Note that the positions of a, b, and c
are the same, a� (b� c) need not be the same as, say, b� (a� c).

• Identity: The set must contain an identity element e for which a� e = e� a = a.

• Inverse: For every a inG, there must be an element b ≡ a−1 inG so that b�a = a�b = e
(we do not distinguish between left and right inverses). The inverse of any element a
is unique; prove it 2.

These are essential properties of a group. Furthermore, if a � b = b � a, the group is said
to be abelian. If not, the group is non-abelian. Note that no two elements of a group are

1In most of the texts this is called group multiplication or simply multiplication operator. Let me warn you
that the operator can very well be something completely different from ordinary or matrix multiplication.
For example, it can be addition for the group of all integers.

2Use reductio ad absurdum. Assume that there are two inverses of an element and show that this leads
to a contradiction.
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identical. If the number of group elements (this is also called the order of the group) is finite,
it is a finite group; otherwise it is an infinite group. Elements of a finite group are necessarily
discrete (finite number of elements between any two elements). An infinite group may have
discrete or continuous elements.

Now some examples:

• The additive group of all integers. It is an abelian infinite group. The group operation
is addition, the identity is 0, and the inverse of a is just −a. Note that the set of all
positive integers is not a group; there is no identity or inverse.

• The multiplicative group of all real numbers excluding zero (why?).

• Zn, the multiplicative group of n-th roots of unity (this is also called the cyclic
group of order n). For example, Z2 = {1,−1}, Z3 = {1, ω, ω2} where ω = 11/3;
Z4 = {1, i,−1,−i}. The operation is multiplication and the identity is 1 (what is the
inverse?).

• The n-object permutation group Sn. Consider a 3-element permutation group S3 =
{a, b, c}. There are six elements: P0, which is the identity and does not change the
position of the elements; P12, which interchanges positions 1 and 2, i.e., P12 → (b, a, c).
Similarly, there are P13 and P23. Finally, there are P123 and P132, with

P123(a, b, c)→ (c, a, b) , P132(a, b, c)→ (b, c, a), (2)

i.e., P123 takes element of position 1 to position 2, that of position 2 to position 3 and
that of position 3 to position 1. Obviously, P123 = P231 = P312, and similarly for P132.
There are texts that use some other definitions of the permutation operators, but that
is just like renaming the elements.

• C4v, the symmetry group of a square. Consider a square in the x-y plane with corners
at (a, a), (a,−a), (−a,−a), and (−a, a). The symmetry operations are rotations about
the z axis by angles π/2, π and 3π/2 (generally, they are taken to be anticlockwise,
but one can take clockwise rotations too), reflections about x and y axes, and about
the diagonals.

• U(n), the group of all n × n unitary matrices. Thus, the elements of U(1) are pure
phases like exp(iθ). It is the group of phase transformations. Apart from U(1), all
U(n)s are non-abelian. When we say that an individual phase in the wave function
does not have any physical significance, we mean that the Lagrangian is so constructed
that it is invariant under a U(1) transformation ψ → eiθψ.

• SU(n), the group of all n × n unitary matrices with determinant unity (also called
unitary unimodular matrices). This is the most important group in particle physics.
All SU groups are non-abelian, of which the simplest is SU(2). The simplest member

of SU(2) is the two-dimensional rotation matrix
(

cos θ sin θ
− sin θ cos θ

)
, characterised by

different values of θ.

• O(n), the group of all n× n orthogonal matrices. It is non-abelian for n ≥ 2.

• SO(n), the group of all n×n orthogonal matrices with determinant unity. Thus, SO(2)
and SO(3) are the familiar rotation groups in two and three dimensions respectively.
The S in SU(n) and SO(n) stands for special, viz., the unimodularity property.
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The first group is infinite but discrete, i.e., there are only a finite number of group
elements between any two elements of the group. The second group is infinite and continuous,
since there are infinite number of reals between any two real numbers, however close they
might be. Zn and Sn are obviously discrete, since they are finite. The last four groups are
infinite and continuous, which means that there are an infinite number of group elements
between two given elements of the group. We will be interested in only those continuous
groups whose elements can be parametrised by a finite number of parameters. Later, we will
see that this number is equal to the number of generators 3 of the group.

Q. Show that the number of independent elements of an N ×N unitary matrix is N2, and that of

an N ×N unimodular matrix is N2 − 1. [Hint: U †U = 1, so det U det U † = 1, or |det U |2 = 1, so

that the determinant must have modulus unity and a form like exp(iθ).]

Q. Show that the determinant of a 2× 2 orthogonal matrix must be either +1 or −1. [Hint: Write

the matrix as

(
a b
c d

)
and construct the constraint equations. Show that this leads to (ad−bc)2 = 1.]

Q. Check whether the following are groups: (i) All integers except zero for multiplication; (ii) All

2×2 orthogonal matrices with determinant −1; (iii) All purely imaginary numbers (excluding zero)

for multiplication, and the same (including zero) for addition.

Q. Check that the matrix

(
eiα cos θ eiβ sin θ
−e−iβ sin θ e−iα cos θ

)
is a member of SU(2). Note that α, β, and θ

are all real and independent. Later you will see that an SU(2) member has at most 3 independent

elements, and an SU(N) member has N2 − 1.

3 Discrete and Finite Groups

3.1 Multiplication Table

A multiplication table is nothing but a compact way to show the results of all possible
compositions among the group elements. Obviously, this makes sense only for finite groups.
For example, the multiplication tables for Z4 and S3 are, respectively,

1 i −1 −i
1 1 i −1 −i
i i −1 −i 1
−1 −1 −i 1 i
−i −i 1 i −1

P0 P12 P13 P23 P123 P132

P0 P0 P12 P13 P23 P123 P132

P12 P12 P0 P132 P123 P23 P13

P13 P13 P123 P0 P132 P12 P23

P23 P23 P132 P123 P0 P13 P12

P123 P123 P13 P23 P12 P132 P0

P132 P132 P23 P12 P13 P0 P123

3You do not yet know what a group generator is, so wait, or directly go to the Lie group section.
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One should note a few things. First, Z4 is obviously abelian, and hence the multiplication
table is symmetric, but S3 is non-abelian (e.g., P13P23 6= P23P13). For both of them, all ele-
ments occur only once in each row or column. This is a general property of the multiplication
table and is easy to prove. Suppose two elements a � b and a � c are same. Multiply by
a−1, so b = c, contrary to our assumption of all elements being distinct. However, number
of elements in each row or column is equal to the order of the group, so all elements must
occur once and only once.

Second, (1,−1) or Z2 is a subgroup (a subset of a group that itself behaves like a group
under the same operation) of Z4, and (P0, P123, P132) is a subgroup of S3. In fact, there are
three more subgroups of S3, find them. We of course exclude two trivial subgroups that
every group has, the identity element and the entire group itself. Can you show that the
identity of the bigger group must be the identity of the subgroup too?

3.2 Isomorphism and Homomorphism

Consider the symmetry group C3 of an equilateral triangle, with six elements (identity, three
reflections about the medians, and rotations by 2π/3 and 4π/3). The multiplication table
is identical with S3. Only this (not just the number of elements) shows that the groups
behave in an identical way. This is known as isomorphism: we say that these two groups are
isomorphic to one another. Thus, isomorphism means a one-to-one correspondence between
the elements of two groups so that if a, b, c ∈ G and p, q, r ∈ H, and a, b, c are isomorphic to
p, q, r respectively, then a� b = c implies p� q = r, for all a, b, c and p, q, r. The operations
in G and H may be completely different. Try to convince yourself that the identity of one
group must be mapped on to the identity of the second group 4.

Thus, S3 is isomorphic to C3. If we consider only rotational symmetries, then the three-
member subgroup of C3 is isomorphic to Z3 (and also to the (P0, P123, P132) subgroup of
S3, which, because of isomorphism, we will call Z3 from now on if there is no chance for
any confusion). In fact, this is a general property: the rotational symmetry group of any
symmetric n-sided polygon, having 2π/n rotation as a symmetry operation, is isomorphic
to Zn. Check this for Z4. This cannot be a coincidence; what is the physical reason behind
this?

If the mapping is not one-to-one but many-to-one, the groups are said to be homomorphic
to one another. Obviously, in a many-to-one mapping, some information is lost. All groups
are homomorphic to the group containing the identity; but that is a very bad mapping,
since no information about the group structure is retained. A better homomorphism occurs
between Z2 and Z4, where (1,−1) of Z4 is mapped to 1 of Z2, and (i,−i) of Z4 is mapped
to −1 of Z2. Isomorphism is only a special case of homomorphism, but in general, the two
groups which are homomorphic to one another should be of different order, and the ratio of
their orders n/m should be an integer k. In this case, set of k elements of G is mapped to
one element of H. The set containing identity in G must be mapped to the identity of H:
prove this. Also prove that this set itself must form a group.

4Show that if eG 7→ p 6= eH , this leads to a contradiction.
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3.3 Conjugacy Classes

Consider a group G with elements {a, b, c, d, · · ·}. If aba−1 = c, (from now on we drop the �
symbol for group operation), then b and c are said to be conjugate elements. If b is conjugate
to both c and d, then c and d are conjugate to each other. The proof goes like this: Suppose
aba−1 = c and hbh−1 = d, then b = a−1ca and hence ha−1cah−1 = d. But ah−1 is a member
of the group, and hence its inverse, ha−1, too (why the inverse of ah−1 is not a−1h?). So c
and d are conjugate to each other.

It is trivial to show that the identity element in any group is conjugate only to itself, and
for an abelian group all members are conjugate to themselves only.

Now, any discrete group can be separated into sets of elements (need not having the same
number of elements) where all members of a set are conjugate to each other but no member
of any set is conjugate to another member of a different set. In that case, the sets are called
conjugacy classes or simply classes.

Let us take C4v, the symmetry group of a square. The symmetry operations are 1
(identity), rπ/2, rπ, r3π/2 (rotations, may be clockwise or anticlockwise), Rx, Ry (reflections
about x and y axes, passing through the centre of the square), and RNE and RSE, the
reflections about the NE and the SE diagonal. [In some texts you will see different notations,
but these are equally good, if not more transparent.]

These eight elements form a group; that can be checked from the multiplication table.
The group is non-abelian. However, the first four members form an abelian group isomorphic
to Z4. The eight elements can be divided into five classes: (1), (rπ), (rπ/2, r3π/2), (Rx, Ry),
(RNE, RSE). It is left as an exercise to check the class structure.

What is the physical significance of classes? In other words, can we guess which elements
should be in a particular class? The answer is yes: note that the conjugacy operation is
nothing but a similarity transformation performed with the group elements. This will be
more obvious in the next section when we show how to represent the abstract group elements
with matrices, in particular unitary matrices.

Identity must be a class by itself. rπ/2 and r3π/2 belong to the same class because there
is an element of the group which relates rotation by π/2 with rotation by 3π/2: just the
reflection about the x or y axis, which makes a clockwise rotation anticlockwise and vice
versa. Similarly, Rx and Ry belong to the same class since there is an operation that relates
them: rotation by π/2. However, Rx and RNE cannot belong to the same class, since there
is no symmetry operation of rπ/4.

4 Representation of a Group

The permutation group discussed above is an example of a transformation group on a physical
system. In quantum mechanics, a transformation of the system is associated with a unitary
operator in the Hilbert space (time reversal is the only example of antiunitary transformation
that is relevant to us). Thus, a transformation group of a quantum mechanical system is
associated with a mapping of the group to a set of unitary operators 5. Thus, for each a
in G there is a unitary operator D(a), with identity 1 being the operator corresponding to

5If this mapping is one-to-one, the representation is called faithful. We will deal with faithful representa-
tions only.
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the identity element of the group: D(e) = 1. This mapping must also preserve the group
operation, i.e.,

D(a)D(b) = D(a� b) (3)

for all a and b in G. A mapping which satisfies eq. (3) is called a representation of the group
G. In fact, a representation can involve nonunitary operators so long as they satisfy eq. (3).

For example, the mapping
D(n) = exp(inθ) (4)

is a representation of the additive group of integers, since

exp(imθ) exp(inθ) = exp(i(n+m)θ). (5)

Also,
D(e) = 1 , D(a) = e2πi/3 , D(b) = e4πi/3 (6)

is a 1× 1 representation of Z3.

Check that the following mapping is a representation of the 3-element permutation group
S3:

D(1) =

 1 0 0
0 1 0
0 0 1

 ; D(12) =

 0 1 0
1 0 0
0 0 1

 ; D(13) =

 0 0 1
0 1 0
1 0 0

 ;

D(23) =

 1 0 0
0 0 1
0 1 0

 ; D(123) =

 0 0 1
1 0 0
0 1 0

 ; D(321) =

 0 1 0
0 0 1
1 0 0

 . (7)

Particularly, check the multiplication table.

In short, a representation is a specific realisation of the group operation law by finite or
infinite dimensional matrices. For abelian groups, their representative matrices commute.

Consider a n-dimensional Hilbert space. Thus, there are n orthonormal basis vectors. Let
|i〉 be a normalised basis vector. We define the ij-th element of any representation matrix
D(a) as

[D(a)]ij = 〈i|D(a)|j〉 , (8)

so that
D(a)|j〉 =

∑
i

|i〉〈i|D(a)|j〉 =
∑
i

[D(a)]ij|j〉 . (9)

From now on, we will freely translate from one language (representations as abstract linear
operators) to the other (representations as matrices). Anyway, it is clear that the dimension
of the representation matrices is the same as that of the Hilbert space.

Thus, the elements of a group can be represented by matrices. The dimension of the
matrices has nothing to do with the order of the group. But the matrices should be all
different, and there should be a one-to-one mapping between the group elements and the
matrices; that’s what we call a faithful representation. Obviously, the representative matrices
are square, because matrix multiplication is defined both for D(a)D(b) and D(b)D(a). The
representation of identity must be the unit matrix, and if T (a) is the representation of a,
then T−1(a) = T (a−1) is the representation of a−1. The matrices must be non-singular; the
inverse exists.

However, the matrices need not be unitary. But in quantum mechanics we will be con-
cerned with unitary operators, and so it is better to show now that any representation of a
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group is equivalent to a representation by unitary matrices. Two representations D1 and D2

are equivalent if they are related by a similarity transformation

D2(a) = SD1(a)S−1 (10)

with a fixed operator S for all a in the group G.

Suppose T (a) is the representation of a group G. T (a)s need not be unitary. Define a
hermitian matrix

H =
∑
a∈G

T (a)T †(a). (11)

This matrix, being hermitian, can be diagonalised by a unitary transformation. Let U †HU =
Hd. Hd is a real diagonal matrix whose elements are the eigenvalues of H. Using the form
of H,

Hd = U †
∑
a∈G

T (a)T †(a)U =
∑
a∈G

(
U †T (a)U

) (
U †T †(a)U

)
=
∑
a∈G
T (a)T †(a) (12)

where T (a) is also a representation (remember U † = U−1). Take the k-th diagonal element
of Hd:

[Hd]kk ≡ dk =
∑
a∈G

∑
j

Tkj(a)T †jk(a) =
∑
a∈G

∑
j

|Tkj(a)|2. (13)

Thus dk ≥ 0. The case dk = 0 can be ruled out since in that case a particular row in all the
representative matrices is zero and the determinants are zero, so all matrices are singular.
So dk is positive for all k, and we can define a diagonal matrix H

1/2
d whose k-th element is√

dk. Construct the matrix V = UH
1/2
d and the representation Γ(a) = V −1T (a)V . We now

show that all Γ matrices are unitary, completing the proof.

We have Γ(a) = V −1T (a)V = H
−1/2
d U−1T (a)UH

1/2
d = H

−1/2
d T (a)H

1/2
d , and

Γ(a)Γ†(a) =
[
H
−1/2
d T (a)H

1/2
d

] [
H

1/2
d T †(a)H

−1/2
d

]
= H

−1/2
d T (a)HdT †(a)H

−1/2
d

= H
−1/2
d T (a)

∑
b∈G
T (b)T †(b)T †(a)H

−1/2
d

= H
−1/2
d

∑
b∈G
T (ab)T †(ab)H−1/2d

= H
−1/2
d HdH

−1/2
d = 1. (14)

Here we have used the rearrangement theorem: as long as we sum over all the elements of
the group, how we denote them is immaterial.

This theorem depends on the convergence of a number of sums. For an infinite group,
this is not so straightforward. However, for Lie groups (to be discussed in the next section)
this theorem holds.

4.1 Reducible and Irreducible Representations

A representation D is reducible if it is equivalent to a representation D′ with block-diagonal
form (or itself block-diagonal):

D′(x) = SD(x)S−1 =
(
D′1(x) 0

0 D′2(x)

)
. (15)
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The vector space on which D′ acts breaks up into two orthogonal subspaces, each of which is
mapped into itself by all the operators D′(x). The representation D′ is said to be the direct
sum of D′1 and D′2:

D′ = D′1 ⊕D′2. (16)

A representation is irreducible if it cannot be put into block-diagonal form by a similarity
transformation. We will use the shorthand IR for irreducible representations.

One can add up several IRs to construct a bigger reducible representation. There is
another way to construct a bigger representation out of several IRs. Condider two IRs D1

and D2, where D1 is m-dimensional, acting on a vector space |i〉 where i = 1, · · ·m and D2

is n-dimensional, acting on another vector space |p〉 where p = 1, · · ·n. We can make a mn
dimensional space by taking basis vectors labeled by |i〉 and |p〉 in an ordered pair |i, p〉,
which can have mn possible values. The representation D1 ⊗D2 is called a tensor product
representation, which can be obtained by direct multiplication of two smaller representations:

〈i, p|D1(g)⊗D2(g)|j, q〉 ≡ 〈i|D1(g)|j〉〈p|D2(g)|q〉 . (17)

Q. Show that the 3-dimensional representation of Z3, given by D(1), D(123) and D(321) of (7), is
completely reducible with a similarity transformation by

S =
1

3

 1 1 1
1 ω2 ω
1 ω ω2

 (18)

where ω = exp(2πi/3).

4.2 Schur’s Lemma and the Great Orthogonality Theorem

Before closing the section on discrete groups, we will prove a very important theorem on the
orthogonality of different representations of a group. This theorem tells you that if you have
two different representations of a group which are both irreducible but inequivalent to each
other, then the ‘dot product’ of these two representations is zero. What is a ‘dot product’?
Each of these representations form a g-dimensional vector space, where g is the order of
the group. The ‘dot product’ is something like taking a matrix from one space, taking its
corresponding matrix from the other space, taking any two elements of these matrices, and
then sum over all elements of the group. A more mathematical definition will soon follow,
but before that we need to prove two lemmas by Schur.

Schur’s Lemma 1. If a matrix P commutes with all representative matrices of an irre-
ducible representation, then P = c1, a multiple of the unit matrix.

Proof. Given, PT (a) = T (a)P for all a ∈ G, where we take T (a)s to be a unitary
representation without loss of generality. Suppose the dimension of T (a) is n× n; evidently,
that should be the dimension of P . T (a)s possess a complete set of n eigenvectors. So does
P , since [P, T (a)] = 0. Let ψj be some eigenvector of P with eigenvalue cj: Pψj = cjψj.
Then PT (a)ψj = cjT (a)ψj. So both ψj = T (1)ψj and T (a)ψj, two independent eigenvectors,
have same eigenvalue. How many such degenerate states exist? Obviously n, since if the
number of such degenerate states be m < n, we have an m-dimensional invariant subspace
in the whole n-dimensional vector space, so the original space is not irreducible. Thus, all
cjs are equal, and P = c1.
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Schur’s Lemma 2. Suppose you have two irreducible representations T i(a) and T j(a) of
dimension li and lj respectively. If a matrix M satisfies T i(a)M = MT j(a) for all a ∈ G,
then either (i) M = 0, a null matrix, or (ii) det M 6= 0, in which case T i and T j are equivalent
representations.

Proof. The dimension of M is li × lj. If li = lj, M is a square matrix. If its determinant
is not zero, T i and T j are obviously equivalent representations.

First, we show, with the help of the first lemma, that M †M is a multiple of the unit
matrix. Take the hermitian conjugate of both sides of the defining equation:

M †T i
†
(a) = T j

†
(a)M † ⇒ M †T i(a−1) = T j(a−1)M †,

M †T i(a−1)M = T j(a−1)M †M ⇒ M †MT j(a−1) = T j(a−1)M †M. (19)

This is true for all the elements of G, so M †M = c1. If M is a square matrix and c 6= 0,
then the representations are equivalent. If c = 0, then

(M †M)ii =
∑
k

|Mki|2 = 0. (20)

This is true only if Mki = 0 for all k. But i is arbitrary and can run from 1 to n. So M = 0.

Now suppose li 6= lj. Let li < lj. Add lj− li rows of zero to M to get a square matrixM,
whose determinant is obviously zero. But M†M = M †M , and since the first one is zero, so
is the second one. Again take the (i, i)-th element of M †M to get M = 0.

The Great Orthogonality Theorem says that if T i and T j are two inequivalent irre-
ducible representations of a group G, then∑

a∈G
T ikm(a)T jns(a

−1) =
g

li
δijδksδmn, (21)

where li and lj are the dimensions of the representations T i and T j respectively, and g is the
order of the group.

Proof. Consider a matrix M constructed as

M =
∑
a∈G

T i(a)XT j(a−1) (22)

where X is an arbitrary matrix, independent of the group elements. Note that if the repre-
sentations are unitary then T j(a−1) = T j†(a). Let T i and T j be two inequivalent irreducible
representations of dimensions li and lj respectively. Multiplying both sides of eq. (22) by
T i(b), where b ∈ G, we get

T i(b)M =
∑
a∈G

T i(ba)XT j(a−1) =
∑
c∈G

T i(c)XT j(c−1b)

=
∑
c∈G

T i(c)XT j(c−1)T j(b) = MT j(b), (23)

and so, by the second lemma, M = 0. But this is true for any X; let Xpq = δpmδqn, i.e., only
the mn-th element is 1 and rest 0. Take the ks-th element of M :

Mks =
∑
a∈G

∑
p,q

T ikp(a)XpqT
j
qs(a

−1) = 0. (24)
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But this reduces to ∑
a∈G

T ikm(a)T jns(a
−1) = 0. (25)

Next, construct a matrix N =
∑
a∈G T

i(a)XT i(a−1). By an argument similar to eq. (23), we
get NT i(a) = T i(a)N for all a ∈ G, so N is a multiple of the unit matrix: N = c1. Taking
the ks-th element of N , and the same form of X, we find∑

a∈G
= T ikm(a)T ins(a

−1) = cδks. (26)

To get c, take the trace of N , which is a multiple of an li × li dimensional unit matrix:

Tr(N) = cli =
∑
a∈G

∑
k,p,q

T ikp(a)XpqT
i
qk(a

−1)

=
∑
p,q

Xpq

∑
a∈G

∑
k

T iqk(a
−1)T ikp(a)

=
∑
p,q

Xpq

∑
a∈G

T iqp(1) = g
∑
p,q

Xpqδpq = g Tr(X), (27)

so that c = g Tr(X)/li. But Tr(X) = 0 if m 6= n, or Tr(X) = δmn. Combining this with
eq. (25), we get ∑

a∈G
T ikm(a)T jns(a

−1) =
g

li
δijδksδmn. (28)
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