# Tutorial 2 

Vector Analysis

PHY 102

January 16, 2015

## Problem no. 2

- Given $\vec{r}=x \hat{i}+y \hat{j}+z \hat{k}$, show that, a) $\left.\vec{\nabla}(\ln |\vec{r}|)=\frac{\hat{r}}{r}, b\right)$ $\vec{\nabla}\left(\frac{1}{r}\right)=-\frac{\hat{r}}{r^{2}}$ and c) $\vec{\nabla} r^{n}=n r^{n-1} \vec{r}$ where $r=|\vec{r}|=\sqrt{x^{2}+y^{2}+z^{2}}$.


## Problem no. 2

- Given $\vec{r}=x \hat{i}+y \hat{j}+z \hat{k}$, show that, a) $\left.\vec{\nabla}(\ln |\vec{r}|)=\frac{\hat{r}}{r}, b\right)$ $\vec{\nabla}\left(\frac{1}{r}\right)=-\frac{\hat{r}}{r^{2}}$ and c) $\vec{\nabla} r^{n}=n r^{n-1} \vec{r}$ where $r=|\vec{r}|=\sqrt{x^{2}+y^{2}+z^{2}}$.
- Recall the gradient of a scalar $\Phi$ :

$$
\vec{\nabla} \Phi=\frac{\partial \Phi}{\partial x} \hat{i}+\frac{\partial \Phi}{\partial y} \hat{j}+\frac{\partial \Phi}{\partial z} \hat{k}
$$

## Problem no. 2

- Given $\vec{r}=x \hat{i}+y \hat{j}+z \hat{k}$, show that, a) $\left.\vec{\nabla}(\ln |\vec{r}|)=\frac{\hat{r}}{r}, b\right)$ $\vec{\nabla}\left(\frac{1}{r}\right)=-\frac{\hat{r}}{r^{2}}$ and c) $\vec{\nabla} r^{n}=n r^{n-1} \vec{r}$ where $r=|\vec{r}|=\sqrt{x^{2}+y^{2}+z^{2}}$.
- Recall the gradient of a scalar $\Phi$ :

$$
\vec{\nabla} \Phi=\frac{\partial \Phi}{\partial x} \hat{i}+\frac{\partial \Phi}{\partial y} \hat{j}+\frac{\partial \Phi}{\partial z} \hat{k}
$$

- Here $\Phi=\ln |\vec{r}|=\ln \sqrt{x^{2}+y^{2}+z^{2}}=\frac{1}{2} \ln \left(x^{2}+y^{2}+z^{2}\right)$.


## Problem no. 6

- Show that $\vec{\nabla}^{2}\left(\frac{1}{r}\right)=0$.


## Problem no. 6

- Show that $\vec{\nabla}^{2}\left(\frac{1}{r}\right)=0$.
- $\vec{\nabla}^{2}=\vec{\nabla} \cdot \vec{\nabla}=\frac{\partial^{2}}{\partial x^{2}}+\frac{\partial^{2}}{\partial y^{2}}+\frac{\partial^{2}}{\partial z^{2}}$


## Problem no. 6

- Show that $\vec{\nabla}^{2}\left(\frac{1}{r}\right)=0$.
- $\vec{\nabla}^{2}=\vec{\nabla} \cdot \vec{\nabla}=\frac{\partial^{2}}{\partial x^{2}}+\frac{\partial^{2}}{\partial y^{2}}+\frac{\partial^{2}}{\partial z^{2}}$

$$
\vec{\nabla}^{2}\left(\frac{1}{r}\right)=\left(\frac{\partial^{2}}{\partial x^{2}}+\frac{\partial^{2}}{\partial y^{2}}+\frac{\partial^{2}}{\partial z^{2}}\right) \frac{1}{\sqrt{x^{2}+y^{2}+z^{2}}}
$$

## Problem no. 6

- Show that $\vec{\nabla}^{2}\left(\frac{1}{r}\right)=0$.
- $\vec{\nabla}^{2}=\vec{\nabla} \cdot \vec{\nabla}=\frac{\partial^{2}}{\partial x^{2}}+\frac{\partial^{2}}{\partial y^{2}}+\frac{\partial^{2}}{\partial z^{2}}$

$$
\begin{aligned}
\vec{\nabla}^{2}\left(\frac{1}{r}\right)= & \left(\frac{\partial^{2}}{\partial x^{2}}+\frac{\partial^{2}}{\partial y^{2}}+\frac{\partial^{2}}{\partial z^{2}}\right) \frac{1}{\sqrt{x^{2}+y^{2}+z^{2}}} \\
= & \frac{\partial^{2}}{\partial x^{2}}\left(\frac{1}{\sqrt{x^{2}+y^{2}+z^{2}}}\right)+\frac{\partial^{2}}{\partial y^{2}}\left(\frac{1}{\sqrt{x^{2}+y^{2}+z^{2}}}\right) \\
& +\frac{\partial^{2}}{\partial z^{2}}\left(\frac{1}{\sqrt{x^{2}+y^{2}+z^{2}}}\right)
\end{aligned}
$$

## Problem no. 9

- Show that $\vec{\nabla} \cdot\left(\frac{\vec{r}}{r^{3}}\right)=0$, for $r \neq 0$ where, $\vec{r}=x \hat{i}+y \hat{j}+z \hat{k}$.


## Problem no. 9

- Show that $\vec{\nabla} \cdot\left(\frac{\vec{r}}{r^{3}}\right)=0$, for $r \neq 0$ where, $\vec{r}=x \hat{i}+y \hat{j}+z \hat{k}$.
- Divergence of a vector is given by,

$$
\vec{\nabla} \cdot \vec{V}=\frac{\partial V_{x}}{\partial x}+\frac{\partial V_{y}}{\partial y}+\frac{\partial V_{z}}{\partial z}
$$

## Problem no. 9

- Show that $\vec{\nabla} \cdot\left(\frac{\vec{r}}{r^{3}}\right)=0$, for $r \neq 0$ where, $\vec{r}=x \hat{i}+y \hat{j}+z \hat{k}$.
- Divergence of a vector is given by,

$$
\vec{\nabla} \cdot \vec{V}=\frac{\partial V_{x}}{\partial x}+\frac{\partial V_{y}}{\partial y}+\frac{\partial V_{z}}{\partial z}
$$

Here, $V_{x}=\frac{x}{\left(x^{2}+y^{2}+z^{2}\right)^{3 / 2}}, \quad V_{y}=\frac{y}{\left(x^{2}+y^{2}+z^{2}\right)^{3 / 2}}$ and
$V_{z}=\frac{z^{2}}{\left(x^{2}+y^{2}+z^{2}\right)^{3 / 2}}$

## Problem no. 10

- Show that $\vec{\nabla} f(x, y, z)$ is a vector perpendicular to the surface $f(x, y, z)=$ constant .
- Let $f(x, y, z)$ be a function of 3 variables. $f(x, y, z)=c$ defines a surface in three dimensions.
- This means, any point on the surface must satisfy this equation.
- We calculate $\vec{\nabla} f$ at $P$. Goal is to show that $\vec{\nabla} f$ is perpendicular to the surface at the point $P$


## Problem no. 10

- Show that $\vec{\nabla} f(x, y, z)$ is a vector perpendicular to the surface $f(x, y, z)=$ constant .
- Let $f(x, y, z)$ be a function of 3 variables. $f(x, y, z)=c$ defines a surface in three dimensions.
- This means, any point on the surface must satisfy this equation.
- We calculate $\vec{\nabla} f$ at $P$. Goal is to show that $\vec{\nabla} f$ is perpendicular to the surface at the point $P$
- Show that $\vec{\nabla} f(x, y, z)$ is a vector perpendicular to the surface $f(x, y, z)=$ constant.
- Let $f(x, y, z)$ be a function of 3 variables. $f(x, y, z)=c$ defines a surface in three dimensions.
- This means, any point on the surface must satisfy this equation.
- Show that $\vec{\nabla} f(x, y, z)$ is a vector perpendicular to the surface $f(x, y, z)=$ constant.
- Let $f(x, y, z)$ be a function of 3 variables. $f(x, y, z)=c$ defines a surface in three dimensions.
- This means, any point on the surface must satisfy this equation.
- Suppose $P$ is any point on that surface.
perpendicular to the surface at the point $P$.
- Show that $\vec{\nabla} f(x, y, z)$ is a vector perpendicular to the surface $f(x, y, z)=$ constant.
- Let $f(x, y, z)$ be a function of 3 variables. $f(x, y, z)=c$ defines a surface in three dimensions.
- This means, any point on the surface must satisfy this equation.
- Suppose $P$ is any point on that surface.
- We calculate $\vec{\nabla} f$ at $P$. Goal is to show that $\vec{\nabla} f$ is perpendicular to the surface at the point $P$.


## Problem no. 10

- That means we need to show $\vec{\nabla} f$ is perpendicular to the tangent to any curve that lies on the surface and goes through $P$.
- We consider a curve which lies on the surface and passing through $P$.
- How can we specify a curve on the surface?
- Think of a particle moving on the surface
- Let $\vec{r}=x(t) \hat{i}+y(t) \hat{j}+z(t) \hat{k}$ is the position vector of the particle. $x(t), y(t), z(t)$ are the coordinates of the particle at time $t$.
- Since the particle lies on the surface: $f(x(t), y(t), z(t))=c$.
- That means we need to show $\vec{\nabla} f$ is perpendicular to the tangent to any curve that lies on the surface and goes through $P$.
- We consider a curve which lies on the surface and passing through $P$.
- How can we specify a curve on the surface?
- Think of a particle moving on the surface
- Let $\vec{r}=x(t) \hat{i}+y(t) \hat{j}+z(t) \hat{k}$ is the position vector of the particle. $x(t), y(t), z(t)$ are the coordinates of the particle at time $t$.
- Since the particle lies on the surface: $f(x(t), y(t), z(t))=c$.
- That means we need to show $\vec{\nabla} f$ is perpendicular to the tangent to any curve that lies on the surface and goes through $P$.
- We consider a curve which lies on the surface and passing through $P$.
- How can we specify a curve on the surface?
- Think of a particle moving on the surface
- Let $\vec{r}=x(t) \hat{i}+y(t) \hat{j}+z(t) \hat{k}$ is the position vector of the
particle. $x(t), y(t), z(t)$ are the coordinates of the particle at time $t$.
- Since the particle lies on the surface: $f(x(t), y(t), z(t))=c$.
- That means we need to show $\vec{\nabla} f$ is perpendicular to the tangent to any curve that lies on the surface and goes through $P$.
- We consider a curve which lies on the surface and passing through $P$.
- How can we specify a curve on the surface?
- Think of a particle moving on the surface.
- Let $\vec{r}=x(t) \hat{i}+y(t) \hat{j}+z(t) \hat{k}$ is the position vector of the particle. $x(t), y(t), z(t)$ are the coordinates of the particle at time $t$.
- Since the particle lies on the surface: $f(x(t), y(t), z(t))=c$.
- That means we need to show $\vec{\nabla} f$ is perpendicular to the tangent to any curve that lies on the surface and goes through $P$.
- We consider a curve which lies on the surface and passing through $P$.
- How can we specify a curve on the surface?
- Think of a particle moving on the surface.
- Therefore, its trajectory is a curve on the surface.
- Let $\vec{r}=x(t) \hat{i}+y(t) \hat{j}+z(t) \hat{k}$ is the position vector of the particle. $x(t), y(t), z(t)$ are the coordinates of the particle at time $t$.
- Since the particle lies on the surface: $f(x(t), y(t), z(t))=c$.
- That means we need to show $\vec{\nabla} f$ is perpendicular to the tangent to any curve that lies on the surface and goes through $P$.
- We consider a curve which lies on the surface and passing through $P$.
- How can we specify a curve on the surface?
- Think of a particle moving on the surface.
- Therefore, its trajectory is a curve on the surface.
- Let $\vec{r}=x(t) \hat{i}+y(t) \hat{j}+z(t) \hat{k}$ is the position vector of the particle. $x(t), y(t), z(t)$ are the coordinates of the particle at time $t$.
- Since the particle lies on the surface: $f(x(t), y(t), z(t))=c$.
- That means we need to show $\vec{\nabla} f$ is perpendicular to the tangent to any curve that lies on the surface and goes through $P$.
- We consider a curve which lies on the surface and passing through $P$.
- How can we specify a curve on the surface?
- Think of a particle moving on the surface.
- Therefore, its trajectory is a curve on the surface.
- Let $\vec{r}=x(t) \hat{i}+y(t) \hat{j}+z(t) \hat{k}$ is the position vector of the particle. $x(t), y(t), z(t)$ are the coordinates of the particle at time $t$.
- Since the particle lies on the surface: $f(x(t), y(t), z(t))=c$.


## Problem no. 10

- What is the tangent to this curve ?

Ans: We know velocity of a particle is a tangent to the trajectory.

- Since $f(x(t), y(t), z(t))=c$. Differentiate both sides with $t$. We get,



## Problem no. 10

- What is the tangent to this curve ?
- Ans: We know velocity of a particle is a tangent to the trajectory.
- Since $f(x(t), y(t), z(t))=c$. Differentiate both sides with $t$ We get,



## Problem no. 10

- What is the tangent to this curve ?
- Ans: We know velocity of a particle is a tangent to the trajectory.
- Therefore, $\vec{T}=\frac{d x}{d t} \hat{i}+\frac{d y}{d t} \hat{j}+\frac{d z}{d t} \hat{k}$ is the tangent vector to the curve at time $t$.
- Since $f(x(t), y(t), z(t))=c$. Differentiate both sides with $t$. We get,

- What is the tangent to this curve ?
- Ans: We know velocity of a particle is a tangent to the trajectory.
- Therefore, $\vec{T}=\frac{d x}{d t} \hat{i}+\frac{d y}{d t} \hat{j}+\frac{d z}{d t} \hat{k}$ is the tangent vector to the curve at time $t$.
- Since $f(x(t), y(t), z(t))=c$. Differentiate both sides with $t$. We get,

$$
\frac{d f}{d t}=\frac{\partial f}{\partial x} \frac{d x}{d t}+\frac{\partial f}{\partial y} \frac{d y}{d t}+\frac{\partial f}{\partial z} \frac{d z}{d t}=0
$$



- What is the tangent to this curve ?
- Ans: We know velocity of a particle is a tangent to the trajectory.
- Therefore, $\vec{T}=\frac{d x}{d t} \hat{i}+\frac{d y}{d t} \hat{j}+\frac{d z}{d t} \hat{k}$ is the tangent vector to the curve at time $t$.
- Since $f(x(t), y(t), z(t))=c$. Differentiate both sides with $t$. We get,

$$
\begin{aligned}
\frac{d f}{d t}=\frac{\partial f}{\partial x} \frac{d x}{d t}+\frac{\partial f}{\partial y} \frac{d y}{d t}+\frac{\partial f}{\partial z} \frac{d z}{d t} & =0 \\
=>\left(\frac{\partial f}{\partial x} \hat{i}+\frac{\partial f}{\partial y} \hat{j}+\frac{\partial f}{\partial z} \hat{k}\right) \cdot\left(\frac{d x}{d t} \hat{i}+\frac{d y}{d t} \hat{j}+\frac{d z}{d t} \hat{k}\right) & =0
\end{aligned}
$$

- What is the tangent to this curve ?
- Ans: We know velocity of a particle is a tangent to the trajectory.
- Therefore, $\vec{T}=\frac{d x}{d t} \hat{i}+\frac{d y}{d t} \hat{j}+\frac{d z}{d t} \hat{k}$ is the tangent vector to the curve at time $t$.
- Since $f(x(t), y(t), z(t))=c$. Differentiate both sides with $t$. We get,

$$
\begin{aligned}
\frac{d f}{d t}=\frac{\partial f}{\partial x} \frac{d x}{d t}+\frac{\partial f}{\partial y} \frac{d y}{d t}+\frac{\partial f}{\partial z} \frac{d z}{d t} & =0 \\
=>\left(\frac{\partial f}{\partial x} \hat{i}+\frac{\partial f}{\partial y} \hat{j}+\frac{\partial f}{\partial z} \hat{k}\right) \cdot\left(\frac{d x}{d t} \hat{i}+\frac{d y}{d t} \hat{j}+\frac{d z}{d t} \hat{k}\right) & =0 \\
\overrightarrow{\nabla f} \cdot \vec{T} & =0
\end{aligned}
$$

