Tutorial 1

Vector Analysis

PHY 102
January 9, 2015

Problem no. 2

- $\vec{A}=3 \hat{i}-\hat{j}+5 \hat{k}, \vec{B}=2 \hat{i}+\hat{j}-\hat{k}$ and $\vec{C}=5 \hat{i}-2 \hat{j}-1 \hat{k}$. Find the unit vector along $\vec{A}+2 \vec{B}+3 \vec{C}$.

Problem no. 2

- $\vec{A}=3 \hat{i}-\hat{j}+5 \hat{k}, \vec{B}=2 \hat{i}+\hat{j}-\hat{k}$ and $\vec{C}=5 \hat{i}-2 \hat{j}-1 \hat{k}$. Find the unit vector along $\vec{A}+2 \vec{B}+3 \vec{C}$.
- Recall the definition of unit vector along a vector \vec{V}

$$
\hat{u}=\frac{\vec{v}}{|\vec{V}|} .
$$

Problem no. 2

- $\vec{A}=3 \hat{i}-\hat{j}+5 \hat{k}, \vec{B}=2 \hat{i}+\hat{j}-\hat{k}$ and $\vec{C}=5 \hat{i}-2 \hat{j}-1 \hat{k}$. Find the unit vector along $\vec{A}+2 \vec{B}+3 \vec{C}$.
- Recall the definition of unit vector along a vector \vec{V}

$$
\hat{u}=\frac{\vec{v}}{|\vec{V}|} .
$$

- Here, $\vec{V}=\vec{A}+2 \vec{B}+3 \vec{C}$. Calculate it.

Problem no. 2

- $\vec{A}=3 \hat{i}-\hat{j}+5 \hat{k}, \vec{B}=2 \hat{i}+\hat{j}-\hat{k}$ and $\vec{C}=5 \hat{i}-2 \hat{j}-1 \hat{k}$. Find the unit vector along $\vec{A}+2 \vec{B}+3 \vec{C}$.
- Recall the definition of unit vector along a vector \vec{V}

$$
\hat{u}=\frac{\vec{V}}{|\vec{V}|}
$$

- Here, $\vec{V}=\vec{A}+2 \vec{B}+3 \vec{C}$. Calculate it.
- Calculate magnitude of \vec{V}.

Problem no. 2

- $\vec{A}=3 \hat{i}-\hat{j}+5 \hat{k}, \vec{B}=2 \hat{i}+\hat{j}-\hat{k}$ and $\vec{C}=5 \hat{i}-2 \hat{j}-1 \hat{k}$. Find the unit vector along $\vec{A}+2 \vec{B}+3 \vec{C}$.
- Recall the definition of unit vector along a vector \vec{V}

$$
\hat{u}=\frac{\vec{V}}{|\vec{V}|}
$$

- Here, $\vec{V}=\vec{A}+2 \vec{B}+3 \vec{C}$. Calculate it.
- Calculate magnitude of \vec{V}.

$$
|\vec{V}|=\sqrt{V_{x}^{2}+V_{y}^{2}+V_{z}^{2}}
$$

Problem no. 2

- $\vec{A}=3 \hat{i}-\hat{j}+5 \hat{k}, \vec{B}=2 \hat{i}+\hat{j}-\hat{k}$ and $\vec{C}=5 \hat{i}-2 \hat{j}-1 \hat{k}$. Find the unit vector along $\vec{A}+2 \vec{B}+3 \vec{C}$.
- Recall the definition of unit vector along a vector \vec{V}

$$
\hat{u}=\frac{\vec{V}}{|\vec{V}|}
$$

- Here, $\vec{V}=\vec{A}+2 \vec{B}+3 \vec{C}$. Calculate it.
- Calculate magnitude of \vec{V}.

$$
|\vec{V}|=\sqrt{V_{x}^{2}+V_{y}^{2}+V_{z}^{2}}
$$

- Simplify the expression.

Problem no. 3

- The initial point P and terminal point Q of a vector $\overrightarrow{P Q}$ is given by $(1,2,3)$ and $(-2,3,-4)$ respectively. Find out the vector $\overrightarrow{P Q}$.

Problem no. 3

- The initial point P and terminal point Q of a vector $\overrightarrow{P Q}$ is given by $(1,2,3)$ and $(-2,3,-4)$ respectively. Find out the vector $\overrightarrow{P Q}$.
- Join the point P with the origin of the coordinate system. Join the point Q with the origin of the coordinate system.

Problem no. 3

- The initial point P and terminal point Q of a vector $\overrightarrow{P Q}$ is given by $(1,2,3)$ and $(-2,3,-4)$ respectively. Find out the vector $\overrightarrow{P Q}$.
- Join the point P with the origin O of the coordinate system. Join the point Q with the origin O of the coordinate system.
- Calculate $\overrightarrow{O P}$ and $\overrightarrow{O Q}$

Problem no. 3

- The initial point P and terminal point Q of a vector $\overrightarrow{P Q}$ is given by $(1,2,3)$ and $(-2,3,-4)$ respectively. Find out the vector $\overrightarrow{P Q}$.
- Join the point P with the origin O of the coordinate system. Join the point Q with the origin O of the coordinate system.
- Calculate $\overrightarrow{O P}$ and $\overrightarrow{O Q}$
- Join P and Q. How can you write $\overrightarrow{P Q}$ in terms of $\overrightarrow{O P}$ and $\overrightarrow{O Q}$.?

Problem no. 3

- The initial point P and terminal point Q of a vector $\overrightarrow{P Q}$ is given by $(1,2,3)$ and $(-2,3,-4)$ respectively. Find out the vector $\overrightarrow{P Q}$.
- Join the point P with the origin of the coordinate system. Join the point Q with the origin of the coordinate system.
- Calculate $\overrightarrow{O P}$ and $\overrightarrow{O Q}$
- Join P and Q. How can you write $\overrightarrow{P Q}$ in terms of $\overrightarrow{O P}$ and $\overrightarrow{O Q} . ?$

$$
\overrightarrow{P Q}=\overrightarrow{O Q}-\overrightarrow{O P}
$$

Problem no. 4

- Show that the necessary and sufficient condition that the vectors $\vec{A}=A_{1} \hat{i}+A_{2} \hat{j}+A_{3} \hat{k}, \vec{B}=B_{1} \hat{i}+B_{2} \hat{j}+B_{3} \hat{k}$ and $\vec{C}=C_{1} \hat{i}+C_{2} \hat{j}+C_{3} \hat{k}$ be linearly independent is that the determinant

$$
\left\lvert\, \begin{array}{lll}
A_{1} & A_{2} & A_{3} \\
B_{1} & B_{2} & B_{3} \\
C_{1} & C_{2} & C_{3}
\end{array}\right.
$$

is non-zero.

Problem no. 4

- Recall the condition for linear independence: Three vectors \vec{A}, \vec{B} and \vec{C} are linearly independent if the equation

$$
m_{1} \vec{A}+m_{2} \vec{B}+m_{3} \vec{C}=0
$$

has no other solution than $m_{1}=0, m_{2}=0$ and $m_{3}=0$.

- Write down the equation in cartesian coordinate.

Consider
$\vec{A}=A_{1} \hat{i}+A_{2} \hat{j}+A_{3} \hat{k}, \quad \vec{B}=B_{1} \hat{i}+B_{2} \hat{j}+B_{3} \hat{k}, \quad \vec{C}=C_{1} \hat{i}+C_{2} \hat{j}+C_{3} \hat{k}$

- What are the equations for m_{1}, m_{2} and m_{3} ?

Problem no. 4

- Can you write these equations in the following form?

$$
\left(\begin{array}{lll}
A_{1} & A_{2} & A_{3} \\
B_{1} & B_{2} & B_{3} \\
C_{1} & C_{2} & C_{3}
\end{array}\right)\left(\begin{array}{c}
m_{1} \\
m_{2} \\
m_{3}
\end{array}\right)=0
$$

- This equation has solution $m_{1}=0, m_{2}=0$ and $m_{3}=0$ only when the determinant of the matrix is non-zero

Problem no. 7

- $\vec{A}=3 \hat{i}-\hat{j}+5 \hat{k}, \vec{B}=2 \hat{i}+\hat{j}-\hat{k}$. Find the projection of \vec{A} on \vec{B} and vice-versa.

Problem no. 7

- $\vec{A}=3 \hat{i}-\hat{j}+5 \hat{k}, \vec{B}=2 \hat{i}+\hat{j}-\hat{k}$. Find the projection of \vec{A} on \vec{B} and vice-versa.
- The projection of a vector \vec{A} along another vector \vec{B} is defined by

$$
\vec{A} \cdot \frac{\vec{B}}{|\vec{B}|}
$$

Problem no. 7

- $\vec{A}=3 \hat{i}-\hat{j}+5 \hat{k}, \vec{B}=2 \hat{i}+\hat{j}-\hat{k}$. Find the projection of \vec{A} on \vec{B} and vice-versa.
- The projection of a vector \vec{A} along another vector \vec{B} is defined by

$$
\begin{gathered}
\vec{A} \cdot \frac{\vec{B}}{|\vec{B}|} \\
\vec{A} \cdot \frac{\vec{B}}{|\vec{B}|}=\frac{1}{|\vec{B}|} \vec{A} \cdot \vec{B}
\end{gathered}
$$

Problem no. 7

- $\vec{A}=3 \hat{i}-\hat{j}+5 \hat{k}, \vec{B}=2 \hat{i}+\hat{j}-\hat{k}$. Find the projection of \vec{A} on \vec{B} and vice-versa.
- The projection of a vector \vec{A} along another vector \vec{B} is defined by

$$
\begin{gathered}
\vec{A} \cdot \frac{\vec{B}}{|\vec{B}|} \\
\vec{A} \cdot \frac{\vec{B}}{|\vec{B}|}=\frac{1}{|\vec{B}|} \vec{A} \cdot \vec{B}
\end{gathered}
$$

- Calculate $\vec{A} \cdot \vec{B}$ and $|\vec{B}|$.
- What about projection of \vec{B} along \vec{A}.

