PHY102: Assignment 3

1. Calculate divergence and curl of the following vector

$$
\vec{V}=e^{3 x} \sin y \hat{i}+\frac{\cos ^{2} y}{1+5 y^{2}} \hat{j}+\tan y \log z \hat{k} .
$$

2. Suppose we are in two dimensions. We have x axis and y axis. The unit vectors along positive x and positive y directions are \hat{i} and \hat{j} respectively. Now we make a coordinate transformation and go to (r, θ) coordinate system. The coordinates of these two coordinate systems are related by,

$$
x=r \cos \theta \quad \text { and } \quad y=r \sin \theta .
$$

The unit vectors in (r, θ) coordinate system are given by \hat{r} and $\hat{\theta} . \hat{r}$ is the direction along which r increases keeping θ fixed and $\hat{\theta}$ is the direction along which θ increases keeping r fixed. Look at the figure on the last page. Find the relation between $(\hat{r}, \hat{\theta})$ and (\hat{i}, \hat{j}).

Ans: $\hat{r}=\hat{i} \cos \theta+\hat{j} \sin \theta, \hat{\theta}=-\hat{i} \sin \theta+\hat{j} \cos \theta$.

