PHY102: Assignment 3

1. Show that, $\vec{E}=\left(2 x y+z^{3}\right) \hat{i}+x^{2} \hat{j}+3 x z^{2} \hat{k}$ is conservative i.e. $\vec{\nabla} \times \vec{E}=0$. Therefore, the vector \vec{E} can be written as gradient of a scalar (as we discussed in the class) : $\vec{E}=\vec{\nabla} \phi$. Find ϕ.

Ans. The first part is easy. $\vec{E}=\vec{\nabla} \phi=>\frac{\partial \phi}{\partial x}=2 x y+z^{3}, \frac{\partial \phi}{\partial y}=x^{2}, \frac{\partial \phi}{\partial z}=3 x z^{2}$. Hence, from these equations we get, $\phi=x^{2} y+x z^{3}+f_{1}(y, z), \phi=y x^{2}+f_{2}(x, z), \phi=x z^{3}+f_{3}(x, y)$. Comparing these, we get, $\phi=x^{2} y+x z^{3}+y x^{2}+c$
2. Find the work done in moving a particle in the force field $\vec{F}=3 x^{2} \hat{i}+(2 x z-y) \hat{j}+z \hat{k}$ along (a) the straight line from $(0,0,0)$ to $(2,1,3)$.
(b) the space curve $x=2 t^{2}, y=t, z=4 t^{2}-t$ from $t=0$ to $t=1$.
(c) the curve defined by $x^{2}=4 y, 3 x^{3}=8 z$ from $x-0$ to $x=2$.
3. A force is given by $\vec{F}=-3 x^{2} \hat{i}+5 x y \hat{j}$. Calculate work done by the force along the curve in the $x-y$ plane, $y=2 x^{2}$ from a point $(0,0,0)$ to $(1,2,0)$.
4. Consider a vector field $\vec{V}=x^{2} \hat{i}+y^{2} \hat{j}+z^{2} \hat{k}$. Compute

$$
\oint_{S} \vec{V} \cdot d \hat{s}
$$

over the surface of a cube of side 1 as shown in figure.

