PHY102: Assignment 5

1. Suppose the z axis is uniformly charged with a constant charge density λ. Calculate the work done to bring a charge Q from a distance $y=y_{2}$ to $y=y_{1}$ along y axis.
2. Find the total electrostatic energy of a uniformly charged sphere of total charge q and radius R.
3. Find the electrostatic energy of a uniformly charged spherical shell of total charge q and radius R.
4. Calculate the capacitance of two concentric spherical metal shells, with radii a and b.
5. Find the capacitance per unit length of two coaxial metal cylindrical tubes of radii a and b.
6. The electric potential of some configuration is given by,

$$
\Phi(\vec{r})=\alpha \frac{e^{-\lambda r}}{r}
$$

where α and λ are constants. Find the electric field $\vec{E}(\vec{r})$, the charge density $\rho(\vec{r})$ and the total charge.

