PHY102: Assignment 2

1. $\vec{R}=(3 \cos t) \hat{i}+(2 \sin t) \hat{j}-\left(2 t^{2}\right) \hat{k}$. Find a) $\frac{d \vec{R}}{d t}$, b) $\frac{d^{2} \vec{R}}{d t^{2}}$, c) $\left|\frac{d \vec{R}}{d t}\right|$ and d) $\vec{R} \cdot \frac{d^{2} \vec{R}}{d t^{2}}$
2. Suppose a particle is moving along a curve which is parametrised by, $x=a \cos t, y=$ $b \sin t, z=c t$. Find the velocity $\vec{v}(t)$ and acceleration $\vec{f}(t)$ of the particle at a time t. What is $\vec{v}(t) \cdot \vec{f}(t)$?
3. Show that $\vec{\nabla}(F G)=F \vec{\nabla} G+G \vec{\nabla} F$
4. Given $\vec{r}=x \hat{i}+y \hat{j}+z \hat{k}$, show that, a) $\vec{\nabla}(\ln |\vec{r}|)=\frac{\hat{r}}{r}$, b) $\vec{\nabla}\left(\frac{1}{r}\right)=-\frac{\hat{r}}{r^{2}}$ and c) $\vec{\nabla} r^{n}=n r^{n-1} \vec{r}$ where $r=|\vec{r}|=\sqrt{x^{2}+y^{2}+z^{2}}$.
5. $\vec{A}=3 x^{2} y^{3} \hat{i}-\left(2 z+7 x^{2}\right) \hat{j}+x y z \hat{k}$. Find $\vec{\nabla} \cdot \vec{A}$ at a point $P=(1,-3,5)$.
6. Show that $\vec{\nabla}^{2}\left(\frac{1}{r}\right)=0$.
7. A vector whose divergence is zero is called solenoidal. Determine the constant a so that the following vector is solenoidal

$$
\vec{V}=(4 x+2 y-3 z) \hat{i}+(x-y) \hat{j}+(5 x-7 y+a z) \hat{k}
$$

8. Suppose $\vec{A}(x, y, z)=A_{1}(x, y, z) \hat{i}+A_{2}(x, y, z) \hat{j}+A_{3}(x, y, z) \hat{k}$. Show that,

$$
d \vec{A}=\left(\vec{\nabla} A_{1} \cdot d \vec{r}\right) \hat{i}+\left(\vec{\nabla} A_{2} \cdot d \vec{r}\right) \hat{j}+\left(\vec{\nabla} A_{3} \cdot d \vec{r}\right) \hat{k}
$$

9. Show that $\vec{\nabla} \cdot\left(\frac{\vec{r}}{r^{3}}\right)=0$, for $r \neq 0$ where, $\vec{r}=x \hat{i}+y \hat{j}+z \hat{k}$.
10. Show that $\vec{\nabla} f(x, y, z)$ is a vector perpendicular to the surface $f(x, y, z)=$ constant .
11. Evaluate $\vec{\nabla} \times \frac{\vec{r}}{r^{2}}$, where, $\vec{r}=x \hat{i}+y \hat{j}+z \hat{k}$.
