1. $\vec{R} = (3\cos t)\hat{i} + (2\sin t)\hat{j} - (2t^2)\hat{k}$. Find a) $\frac{d\vec{R}}{dt}$, b) $\frac{d^2\vec{R}}{dt^2}$, c) $\left|\frac{d\vec{R}}{dt}\right|$ and d) $\vec{R} \cdot \frac{d^2\vec{R}}{dt^2}$

2. Suppose a particle is moving along a curve which is parametrised by, $x = a \cos t$, $y = b \sin t$, z = ct. Find the velocity $\vec{v}(t)$ and acceleration $\vec{f}(t)$ of the particle at a time t. What is $\vec{v}(t) \cdot \vec{f}(t)$?

3. Show that $\vec{\nabla}(FG) = F\vec{\nabla}G + G\vec{\nabla}F$

4. Given $\vec{r} = x\hat{i} + y\hat{j} + z\hat{k}$, show that, a) $\vec{\nabla}(\ln |\vec{r}|) = \frac{\hat{r}}{r}$, b) $\vec{\nabla}(\frac{1}{r}) = -\frac{\hat{r}}{r^2}$ and c) $\vec{\nabla}r^n = nr^{n-1}\vec{r}$ where $r = |\vec{r}| = \sqrt{x^2 + y^2 + z^2}$.

5.
$$\vec{A} = 3x^2y^3\hat{i} - (2z + 7x^2)\hat{j} + xyz\hat{k}$$
. Find $\vec{\nabla} \cdot \vec{A}$ at a point $P = (1, -3, 5)$.

6. Show that $\vec{\nabla}^2\left(\frac{1}{r}\right) = 0.$

7. A vector whose divergence is zero is called solenoidal. Determine the constant a so that the following vector is solenoidal

$$\vec{V} = (4x + 2y - 3z)\hat{i} + (x - y)\hat{j} + (5x - 7y + az)\hat{k}$$

8. Suppose $\vec{A}(x, y, z) = A_1(x, y, z)\hat{i} + A_2(x, y, z)\hat{j} + A_3(x, y, z)\hat{k}$. Show that,

$$d\vec{A} = (\vec{\nabla}A_1 \cdot d\vec{r})\hat{i} + (\vec{\nabla}A_2 \cdot d\vec{r})\hat{j} + (\vec{\nabla}A_3 \cdot d\vec{r})\hat{k}.$$

9. Show that $\vec{\nabla} \cdot \left(\frac{\vec{r}}{r^3}\right) = 0$, for $r \neq 0$ where, $\vec{r} = x\hat{i} + y\hat{j} + z\hat{k}$.

- 10. Show that $\vec{\nabla} f(x, y, z)$ is a vector perpendicular to the surface f(x, y, z) = constant.
- 11. Evaluate $\vec{\nabla} \times \frac{\vec{r}}{r^2}$, where, $\vec{r} = x\hat{i} + y\hat{j} + z\hat{k}$.