PHY 601: Assignment 1

- 1. Find out the cube root of -8i.
- 2. Find out the square root of $1 \sqrt{3}i$.
- 3. Show that the n^{th} roots of any complex number z_0 are given by,

$$c, c \ \omega_n, c \ \omega_n^2, \cdots, c \ \omega_n^{n-1}$$

where, c is any particular n^{th} root of the number z_0 and ω_n^k for $k = (0, 1, \dots, n-1)$ are the distinct n^{th} roots of unity.

4. Show that

$$\sum_{k=0}^{n-1} \omega_n^k = 1$$

where, ω_n^k for $k = (0, 1, \dots, n-1)$ are the distinct n^{th} roots of unity. 5. Let *a* be a fixed real number. Show that the two square roots of a + i are

$$\pm\sqrt{A}\exp\left(i\frac{\alpha}{2}\right)$$

where, $A = \sqrt{a^2 + 1}$ and $\alpha = Arg(a + i)$. 6. Show that

$$\overline{z_1 + z_2 + \dots + z_n} = \overline{z_1} + \overline{z_2} + \dots + \overline{z_n}$$

7. Show that,

$$\left|\frac{1}{z^4 - 4z^2 + 3}\right| \le \frac{1}{3}.$$