PHY 601: Assignment 1

1. Find out the cube root of $-8 i$.
2. Find out the square root of $1-\sqrt{3} i$.

3 . Show that the $n^{t h}$ roots of any complex number z_{0} are given by,

$$
c, c \omega_{n}, c \omega_{n}^{2}, \cdots, c \omega_{n}^{n-1}
$$

where, c is any particular $n^{\text {th }}$ root of the number z_{0} and ω_{n}^{k} for $k=(0,1, \cdots, n-1)$ are the distinct $n^{\text {th }}$ roots of unity.
4. Show that

$$
\sum_{k=0}^{n-1} \omega_{n}^{k}=1
$$

where, ω_{n}^{k} for $k=(0,1, \cdots, n-1)$ are the distinct $n^{t h}$ roots of unity.
5 . Let a be a fixed real number. Show that the two square roots of $a+i$ are

$$
\pm \sqrt{A} \exp \left(i \frac{\alpha}{2}\right)
$$

where, $A=\sqrt{a^{2}+1}$ and $\alpha=\operatorname{Arg}(a+i)$.
6. Show that

$$
\overline{z_{1}+z_{2}+\cdots+z_{n}}=\overline{z_{1}}+\overline{z_{2}}+\cdots+\overline{z_{n}} .
$$

7. Show that,

$$
\left|\frac{1}{z^{4}-4 z^{2}+3}\right| \leq \frac{1}{3}
$$

