Phys106, II-Semester 2018/19, Tutorial 9, Fri 29.3.

Work in teams of three. Do "Stages" in the order below. When all teams finished a stage, make sure all students at your table understand the solution and agree on one by using the board.

- **Stage 1** (i) Draw the following complex numbers as a dot in the complex plane: z = 2 + i3, w = -2 + i, $\xi = 1 4i$.
 - (ii) Evaluate the operations: z + w, $z \xi$, zw, $z\xi$.
 - (iii) Express the following complex numbers as $z = r \exp(i\varphi)$, with $r \in \mathbb{R} > 0$, $\varphi \in \mathbb{R}, 0 < \varphi < 2\pi$. $z_1 = (1+i)/\sqrt{2}, z_2 = i, z_3 = -1, z_4 = (1+i)$.
 - (iv) Differentiate $\frac{d}{dx} \exp[i\beta x]$.
- **Stage 2** (i) Verify that the wave function $\Psi(x,t) = A \exp \left[i(kx \frac{\hbar k^2}{2m}t)\right]$ solves the TDSE Eq. (85) without external potential U(x,t) = 0.
 - (ii) How does this have to be modified of the particle is moving in a constant external potential $U(x,t) = U_0 = const$?
 - (iii) For both cases identify momentum, total energy and kinetic energy of the particle.
- Stage 3 Read the documentation for the online-app for solution of the TDSE on http://www.falstad.com/qm1d/. Some of its functionality (energy levels), we will learn in the context of the SE only next week. For now we shall try to on the fly reproduce the *Example: Numerical solution of TDSE* in the lecture.
 - (i) Switch the setup to "harmonic oscillator". Then switch "mouse: create gaussian" below. In the probability density field, click somewhere away from the centre. What do you see?
 - (ii) Now click on "mouse: edit function" and change the potential landscape at will. You may try to realise the one given in the lecture. Again start in a Gaussian. Discuss on your table to what extend you can understand the motion with classical physics, and where you can't.
 - (iii) Checkout some of the other setups at will.

Bonus: The "phasors" at the bottom and the horizontal lines in the figure are energy eigen-states. We will learn about these next week and then revisit this app. They are like the energy levels in the Bohr atom or the standing waves that fit into the box.

Stage 4 (i) Assume a particle that can move on a ring of circumference *L*. The wavefunction thus requires periodic boundary conditions like in the Bohr model. Normalize the wave function (at t = 0):

$$\Psi(x,t) = A[e^{i\frac{4\pi}{L}x}e^{-iE_1t} + e^{i\frac{2\pi}{L}x}e^{-iE_2t}].$$
(1)

(ii) Find the expectation value of the momentum. Discuss your results.