Phys106, II-Semester 2018/19, Tutorial 11, Fri 12.4.

Work in teams of three. Do "Stages" in the order below. When all teams finished a stage, make sure all students at your table understand the solution and agree on one by using the board.

Stage 1 Catch-up: Do all steps of tutorials 8-11 that you have not yet done earlier or have not fully understood. Read their solutions. Ask us questions about those. In particular, explore the TDSE app at http://www.falstad.com/qm1d/.
If that has a too confusing array of functionalities, there are simpler ones for the square well http://physics.weber.edu/schroeder/software/SquareWell.html and the quantum harmonic oscillator
http://physics.weber.edu/schroeder/software/HarmonicOscillator.html.

Stage 2 Hydrogen atom:

(i) Angular momentum quantisation: Revise /read up on angular momentum (or ask us). Then draw a picture such as the one on the slide with Eq. (132) for the case of an angular momentum with quantum number $l=4$.
(ii) Watch the following video on the precession (slow axis tilting) of a spinning top: https://www.youtube.com/watch?v=sHnDzGWcqlQ. Connect this to the discussion in the lecture of the uncertainties involved in angular momentum quantisation.
(iii) Follow the lecture discussion of the Hydrogen wave-functions $\Psi_{n l m}(r, \theta, \phi)$ for $n=1, n=2$ and all possible l, m. Write the wavefunction as equation and then make drawings. Make more drawings than in the lecture, look at cuts through the $x y$ plane and $x z$ plane. Use the board for this.
(iv) Now extend the equation writing and drawing to the $n=3$ states. Their equations are:

$$
\begin{align*}
& \Psi_{300}(r, \theta, \phi)=\mathcal{N} \underbrace{\left(27-18 \frac{r}{a_{0}}+2 \frac{r^{2}}{a_{0}^{2}}\right) \exp -r / 3 a_{0}}_{\equiv f_{30}(r)}, \tag{1}\\
& \Psi_{310}(r, \theta, \phi)=\mathcal{N} \underbrace{\left(6-\frac{r}{a_{0}}\right) \frac{r}{a_{0}} \exp -r / 3 a_{0} \cos \theta,}_{\equiv f_{31}(r)} \tag{2}
\end{align*}
$$

where \mathcal{N} are (possibly different) normalisation factors.
For your drawing you may use the following plots of the radial part of the wavefunction: TA Please drawn scan and add $n=3$ radial wavefunctions for all possible l. With caption.

