Phys106, II-Semester 2018/19, Assignment 8

Instructor: Sebastian Wüster

1. Electrostatic potential energy is $U=\frac{Q_{g o l d} \times Q_{\text {alpha }}}{4 \pi \epsilon_{0} r}$, where r is the distance between the two charges. Determine the distance of closest approach of $1 \mathrm{MeV} \alpha$-particles on Gold nuclei.
2. Derive the Rutherford scattering formula, Eq. (68) following the discussion in the text book or any other book.
3. If an electron would be in a classical stable orbit around a nucleus, like discussed in the lecture, but the nucleus has a charge $Z e$ (heavy ion) and not e (proton), how do the expressions for orbital size, velocity and energy change?
4. An electron (considered classically) moves within a spatially extended homogeneous positive charge distribution of total charge $Q=Z e>0$ within a sphere of radius R. This is as in the Thompson model, compare also tutorial 8. The electric field it feels is $E(r)=\frac{1}{4 \pi \epsilon_{0}} \frac{Z e r}{R^{3}}$ within that sphere. Show that the electron should undergo harmonic motion and find its frequency ω. For Hydrogen $Z=1$, compare the energy with typical electronic energies of the Hydrogen atom.
5. Find the quantum number for the earth's orbit around the sun. $\left(m_{\text {earth }}=6 \times 10^{24}\right.$ kg , orbital radius $r=1.5 \times 10^{11} \mathrm{~m}$, orbital speed $v=3 \times 10^{4} \mathrm{~m} / \mathrm{s}$. Discuss your answer.
6. Find the wavelength of the spectral line arising due to the following transitions of a Hydrogen atom. Which part of the spectrum is this? (i) $n=10 \rightarrow n=1$, (ii) $n=6 \rightarrow n=3$, (iii) $n=5 \rightarrow n=2$.
