3.3) Quantum problems in one dimension

The "particle in a box" already was our first quantum problem in one dimension.

Let us check out some more, which illustrate essential concepts of quantum physics and can actually be solved fully.

Most more complicated problems can only be solved approximately or numerically (with a computer).

3.3.1) Particle in Finite box

Of course, and infinite energy box $U(x)$ does not exist

New realistic box potential:

$$
\begin{gather*}
U(x)= \\
0,0 \leq x \leq L \tag{188}
\end{gather*}
$$

U_{0}, otherwise

Assume:

$$
E_{n}<U_{0}
$$

What changes compared to section 3.2.2.1) ???

Particle in Finite box

$$
\begin{gathered}
U(x)= \\
0,0 \leq x \leq L
\end{gathered}
$$

U_{0}, otherwise

Most importantly, we can no longer allow the earlier argument why $\phi_{n}(x)=0$ outside the box.

For calculation we have to allow $\phi_{n}(x) \neq 0$ outside

Particle in Finite box

 into regions:
$0,0 \leq x \leq L$

Region II Region IIII

Differential equation (TISE) can be solved in each region

$$
E_{n} \phi_{n}(x)=\left(-\frac{\hbar^{2}}{2 m} \frac{\partial^{2}}{\partial x^{2}}+U(x)\right) \phi_{n}(x)
$$

$$
E_{n} \phi_{n}(x)=\left(-\frac{\hbar^{2}}{2 m} \frac{\partial^{2}}{\partial x^{2}}+U_{0}\right) \phi_{n}(x) \quad \begin{gathered}
E_{n} \phi_{n}(x)=\left(-\frac{\hbar^{2}}{2 m} \frac{\partial^{2}}{\partial x^{2}}+U_{0}\right) \phi_{n}(x) \\
E_{n} \phi_{n}(x)=\left(-\frac{\hbar^{2}}{2 m} \frac{\partial^{2}}{\partial x^{2}}\right) \phi_{n}(x)
\end{gathered}
$$

Particle in Finite box

Let's look at regions I, III first:
$E_{n} \phi_{n}(x)=\left(-\frac{\hbar^{2}}{2 m} \frac{\partial^{2}}{\partial x^{2}}+U_{0}\right) \phi_{n}(x)$

Rewrite: $\frac{\partial^{2}}{\partial x^{2}} \phi_{n}(x)-a^{2} \phi_{n}(x)=0$
(110)
real: $a=\frac{\sqrt{2 m\left(U_{0}-E_{n}\right)}}{\hbar}$
(111)

Solution:
In region I:
$\phi_{I}=C e^{a x}+D e^{-a x}$
In region III: $\quad \phi_{I I I}=F e^{a x}+G e^{-a x}$
[verify by insertion into (110)]

Particle in Finite box

$\phi_{I}=C e^{a x}+D e^{-a x}$
$\phi_{I I I}=F e^{a x}+G e^{-a x}$
Need wave function to go to zero at $x \rightarrow \pm \infty$
Thus $D=0, \quad F=0$

Particle in Finite box

Within box, can use Eq. (103) as before.
Finally: $\phi_{n}(x)$ and $\frac{\partial}{\partial x} \phi_{n}(x)$ have to be continuous at $x=0$ and $x=L$.

Particle in Finite box

Drawing version of patching together

Particle in Finite box

Math version of patching together

Region I
Region II
Region III
$\phi_{n}(x)$

$$
\phi_{I}(0)=\phi_{I I}(0)
$$

$$
\phi_{I I}(L)=\phi_{I I I}(L)
$$

Four equations + normalisation $=5$ equations, only 4 unknowns A, B, C, G
$\left.\frac{\partial}{\partial x} \phi_{n}(x) \quad \frac{\partial}{\partial x} \phi_{I}\right|_{x=0}=\left.\left.\frac{\partial}{\partial x} \phi_{I I}\right|_{x=0} \quad \frac{\partial}{\partial x} \phi_{I I}\right|_{x=L}=\left.\frac{\partial}{\partial x} \phi_{I I i}\right|_{x=L}$
Only for some k have solution $=>$ quantisation again

Particle in Finite box

- The higher U_{0}, the closer it becomes to 3.2.2.1)
- The lower U_{0}, the more the wave-function penetrates into the classically forbidden region

3.3.2) The tunnel effect

We saw that a quantum particle can go where a classical particle can't go....what with a barrier?

(this is like a flipped finite well)

The tunnel effect

Again can solve TISE in regions
Incoming particle Transmitted particle

Make an Ansatz based on free particle wave-functions
[Eq. (84) , $t=0$]
Above, k symbolizes wave number. +k is a wave moving to the right, -k to the left. Always, the particles has energy E .

The tunnel effect

$$
\phi_{I}=1 \times \exp (i k x) \quad \begin{aligned}
& \text { Inside } \mathrm{E}<\mathrm{U}_{0} \text {, use } \\
& \text { earlier results }
\end{aligned} \phi_{I I I}=\sqrt{T} \exp (i k x)
$$ $\sqrt{R} \exp (-i k x)$

\mathbf{T} Transmission probabil
\mathbf{R} Reflection probability
Wavenumber set by energy $k=\frac{\sqrt{2 m E_{n}}}{\hbar}$

The tunnel effect

$\phi_{I}=1 \times \exp (i k x)$

$$
\phi_{I I I}=\sqrt{T} \exp (i k x)
$$

$+\sqrt{R} \exp (-i k x)$

$$
\phi_{I I}=A e^{a x}+B e^{-a x}
$$

$$
a=\frac{\sqrt{2 m\left(U_{0}-E_{n}\right)}}{\hbar}
$$

The tunnel effect

Solution again using continuity
note we draw the real part of Ψ only!!!

Low barrier

Conservation of probability $1=\mathrm{R}+\mathrm{T}$

The tunnel effect

We find barrier transmission probability

$$
\begin{equation*}
T=e^{-2 \kappa L} \quad \kappa=\frac{\sqrt{2 m\left(U_{0}-E\right)}}{\hbar} \tag{113}
\end{equation*}
$$

- In principle always nonzero: quantum particle can "tunnel" through the barrier.
- In practice exponential dependence on barrier depth L and strength U : only big if $\kappa L \sim 1$

Example I: Nuclear alpha decay

-Tunnel effect only important for microscopic objects.

- Consider atomic-nucleus (3.1.4). A fragment of that can be viewed as an alpha-particle.

Alpha particle bound by strong force while inside the nucleus

Example I: Nuclear alpha decay

- Tunnel effect only important for microscopic objects.
- Consider atomic-nucleus (3.1.4). A fragment of that can be viewed as an alpha-particle.

Example I: Nuclear alpha decay

-Tunneling probability can be very low.
-E.g., alpha-decay of ${ }^{238} \mathrm{U}$ nucleus, has a half-life due to alpha decay of $\tau=4.5 \times 10^{9}$ years!

- See Eq. (113): Exponential dependence on E and L.

Example II: Nuclear fusion in the sun

-Tunnelling is also crucial in the inverse process.

- How does a proton get into the strong force well?
- In solar nuclear fusion: $\mathrm{p}+\mathrm{p} \rightarrow \mathrm{pp}\left(\rightarrow \mathrm{pn}+\mathrm{e}^{+}+\mathrm{v}\right)$

Example II: Nuclear fusion in the sun

- Barrier energy

- Mean thermal energy Eq. (21) can reach this at a temperature

$$
T \approx 10^{10} \mathbf{K}
$$

- Solar core "only"

$$
T \approx 1.5 \times 10^{7} \mathbf{K}
$$

Example II: Nuclear fusion in the sun

- With those numbers, it would be extremely unlikely to get a proton to fuse with another.
- But, luckily, the required energy is substantially reduced since proton can tunnel to its partner

Example III: Scanning tunnelling microscope

-Exponential tunneling probability $T=e^{-2 \kappa \boxed{L}}$
\Rightarrow very high sensitivity to L

and display

0.01 nm depth resolution

3.3.3) Quantum reflection

Let us now consider the same potential as in 3.3.2) but with energies $\mathrm{E}>\mathrm{U}$

Classically, particle with that energy will always pass barrier. Quantum?

Quantum reflection

Again our three region calculation

We find

Quantum reflection
$R>0, T<1$ for reflection of a barrier even if $\mathrm{E}>\mathrm{U}_{0}$

3.3.4) The Quantum Harmonic Oscillator

We had started this lecture with the classical harmonic oscillator

near equilibrium this is

Q: Why is HO so important?

a harmonic oscillator

$\mathrm{U}(\mathrm{x})$
with an energy landscape....

The Quantum Harmonic Oscillator

Now let the potential for the particle $U(x)$ be

Newton's Eq.
c.f. section 1.2.)
$m \frac{d^{2}}{d t^{2}} x(t)=-\frac{d}{d x} U(x)$
$m \frac{d^{2}}{d t^{2}} x(t)=-m \omega^{2} x$
$\frac{d^{2}}{d t^{2}} x(t)=-\omega^{2} x$

The Quantum Harmonic Oscillator

Can we now understand the quantum version? Q: What do we expect?
A: Quantized energy levels?

Write again TISE:

$$
\begin{equation*}
E_{n} \phi_{n}(x)=\left(-\frac{\hbar^{2}}{2 m} \frac{\partial^{2}}{\partial x^{2}}+\frac{1}{2} m \omega^{2} x^{2}\right) \phi_{n}(x) \tag{115}
\end{equation*}
$$

Solution methods now more complicated. Turns out the normalisable solutions are...
(PHY 304)

The Quantum Harmonic Oscillator

Solution of TISE for the harmonic oscillator

$$
\begin{align*}
E_{n} & =\hbar \omega\left(n+\frac{1}{2}\right) & \phi_{n}(x) & =\mathscr{N} H_{n}(x / \sigma) e^{-\frac{x^{2}}{2 \sigma^{2}}} \tag{116}\\
n & =0,1,2, \ldots & \sigma & =\sqrt{\frac{\hbar}{m \omega}}
\end{align*}
$$

- As seen before, the oscillator has some minimal energy, called zero-point energy: $\quad E_{0}=\frac{\hbar \omega}{2}$
- $H_{n}(x)$ are special functions called Hermitepolynomials. $\quad \mathcal{N}$ is a normalisation factor.
- $H_{0}(x)=1$, hence the ground-state wave function $\phi_{0}(x)$ is a Gaussian, with zero-point width σ

The Quantum Harmonic Oscillator

The Quantum Harmonic Oscillator

烄 the equal distance in energy between all levels $\Delta E=E_{n+1}-E_{n}=\hbar \omega$

- Quantum manifestation of classical fact that oscillation frequency does not depend on amplitude
- Also implements resonance catastrophe: Excitation with quanta of energy ΔE
can drive very high excitations

Example I:

Bose-Einstein condensate in an atom trap

Cool dilute gas of ${ }^{87} \mathrm{Rb}$ atoms with lasers while trapped

At lowest temperature, all atoms go into trap ground state $\phi_{0}(x)$ [in Eq. (116)]

Can now see oscillator ground state in single picture

Uni Heidelberg / Strassbourg

Example I: Bose-Einstein condensate in an atom trap

Example II: Quantum-opto-mechanics

(large quantum oscillators)
Optical cavity with
vibrating end mirror:
(a)

Kippenberg and Vahala, Opt. Express 1517172 (2007).

- Position of the mirror \Rightarrow wave length of standing waves in cavity via Eq. (16) [mirror affects light]
-Light intensity affects mirror position via radiation pressure, photon momentum, see section 2.2.5) [light affects mirror] (driven oscillator, section 1.2)

Example II: Quantum-opto-mechanics
 (large quantum oscillators)

Optical cavity with vibrating end mirror:

Oscillator driving force by light

Kippenberg and Vahala, Opt. Express 1517172 (2007).

(b)					
\mathcal{F}	200	30,000	22,000	15,000	4,000
$\Omega \mathrm{~m} / 2 \pi$	12.5 kHz	814 kHz	57.8 MHz	134 kHz	12.7 Hz
Q_{m}	18,400	10,000	2,900	$1.1 \cdot 10^{6}$	19,950
$m_{\text {eff }}$	24 ng	$190 \mu \mathrm{~g}$	15 ng	40 ng	$\sim 1 \mathrm{~g}$
Ref.	$[34]$	$[26,27]$	$[22,28]$	$[30]$	$[29]$

Example II: Quantum-opto-mechanics

(large quantum oscillators)

- Succeeds to cool nano-mechanical oscillator of mass $\quad m=311 \mathbf{f g}=3.1 \times 10^{-18} \mathbf{~ k g}$ to almost its quantum mechanical oscillator ground state $n=0$ in Eq. (116).

3.3.5) The correspondence principle

Let us again re-visit the correspondence principle (3.1.9)

For large n, spatial average of $\left|\phi_{n}(x)\right|^{2}$ gives the classical probability distribution of the harmonic oscillator (brown line) [Time averaged: It spends less time at centre, where it is fast]

Example: The correspondence principle

 Same as example section 3.2.1, but mass *=2000, and much narrower wavepacket

Example: The correspondence principle

 Same as example section 3.2.1, but mass * $=2000$, and much narrower wavepacket

