PHY 106 Quantum Physics
e e k Instructor: Sebastian Wiister, IISER Bhopal, 2018
These notes are provided for the students of the class above only.
There is no warranty for correctness, please contact me if you spot a mistake.

3.3) Quantum problems in one dimension

The “particle in a box” already was our first quantum
problem in one dimension.

Let us check out some more, which illustrate
essential concepts of quantum physics and can
actually be solved fully.

Most more complicated problems can only be solved
approximately or numerically (with a computer).



3.3.1) Particle in Finite box

Of course, and infinite energy box U(x) does not exist
New realistic box potential:
A ) U(x) =
' 0,0<x<L (108

Assume:
E < U,

—f—
O L
What changes compared to section 3.2.2.1) ???



Particle in Finite box
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Most importantly, we can no longer allow the earlier
argument why ¢, (x) =0 outside the box.

For calculation we have to allow ¢, (x) # O outside



Particle in Finite box Ulx) =
Calculation, split () 0.0<x<L

into regions: ‘ :
—

Region | Region |l

>
O &
Differential equation (TISE) can be solved 1n each region

2m 0x2

h* o
E.¢,(x) = <__a_ + U(x) | ¢,(%)

()
E,},(x) = (—h—za—z + U0> &, () (I I) E ¢ (x) = (-h—za—z + UO> ¢,(x)

2m ox? PRI 2m ox?
E,¢,(x) = (———) $,(x)

2m 0x?



()
Particle in Finite box i
e

Let’s look at regions I, 111
first: (1) (1)

262

2m ox?2

+ Uo) $,(x) (109) e

O L

real: \/Zm(UO — En)

2
Rewrite: a—qbn(x) —a*p (x) =0 a =
Ox?

h
(110) 111)
Solution: In region I: ¢P; = Ce™ + De™*

Gy = Fe™ + Ge™

[verifty by insertion into (110)]



Particle in Finite box

(1)

0
;= Ce™ + De™* ¢ = Fe™ + Ge™

Need wave function to go to zero at x — * o
Thus D=0, F=0



Particle in Finite box

\ 2mE

k =
ax h — —dxX
1= Ce ¢; = Asin (kx) + B cos (kx) P = Ge

Within box, can use Eq. (103) as before.

Flnally ¢, (x) and a—qﬁ (x) have to be continuous at
=() and x=L. (112)




Particle in Finite box

Drawing version of patching together
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Particle in Finite box

Uo

Math version of patching = —
together (1) ’ /,.\ (I1) A
= \ // \\m
0 \ / 2
Region I Region 11 R

P, (x) ¢/(0) = ¢;(0)

Four equations + normalisation =5 equations,
only 4 unknowns 4,B,C,G

0 | ==
ax P ox | oax

Only for some i(z?lave solut

x=0

Cb]l(L) — Cbm(L)

-
ax 11

x=L

_a¢
_ax 1l

x=L

lon => quantisation again



Particle in Finite box .

* The higher Uy, the closer
it becomes to 3.2.2.1) v,

*The lower U,
the more the
wave-function
penetrates 1nto ' |
the classically| (I) = ) N
forbidden af b~




3.3.2) The tunnel effect

We saw that a quantum particle can go where a
classical particle can’t go....what with a barrier?

UG 7 FALI
E

...1f energy 1s less|than barrier height.
Q: Classically? |/ £,
t "

o L-
(this 1s like a flipped finite well)



The tunnel effect

Again can solve TISE in regions

Incoming particle Transmitted particle
2020
(1)
—_f —+ )
Reflected particle C{L o X

Make an Ansatz based on free particle wave-functions

— Above, k symbolizes wave number. +k is a wave
[Eq (84) , 1 0] moving to the right, -k to the left. Always, the
particles has energy E.



The tunnel effect

, (1)
+; lolddle =

o - X
Inside E<Uj, use

1= 1 X|exp(ikx) earlier results @y =|a/ T exp(ikx)

T Transmission probability

R Reflection probability
2mE

n

Wavenumber set by energy « = .




The tunnel effect

LT T
| R :
o & =
¢; = 1 X|exp(ikx) b = ﬁexp(ikx)
\/E exp(—ikx)
¢II — Aedx + Be—ax

\/21’7’1( UO o En)
B 7

a



The tunnel effect

Solution again using continuity

note we draw the real part of ¥ only!!!

/]

(‘/{/

P

High barrier

Ug

/| Small T

= -
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o

L.ow barrier

!

Larger T

Conservation of probability 1 = R+T

-

5
P
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The tunnel effect Y : 44

U

: &
(We find barrier transmission probability A
okl ~ \/2m(Uy — E)
. T =c¢ K= - (113) )

*In principle always nonzero: quantum particle can
“tunnel” through the barrier.

*In practice exponential dependence on barrier
depth L and strength U: only big if kL ~ 1



rExample I: Nuclear alpha decay

 Tunne]

| effect only important for microscopic objects.

e Consid

er atomic-nucleus (3.1.4). A fragment of

that can be viewed as an alpha-particle.

A
E‘ For this E, what can

Y | happen?
é
o ~
_-r'
, | Alpha particle repelled

Alpha particle boupd L. . by coulomb force
by strong force while - > once outside the
inside the nucleus e el




rExample I: Nuclear alpha decay

 Tunne]

| effect only important for microscopic objects.

e Consid

er atomic-nucleus (3.1.4). A fragment of

that can be viewed as an alpha-particle.

£ Alpha particle may
| tunnel out of nucleus
i with. o bbbl

. (Probability of

¢ - tunnelling sets the
- =5 alpha decay rate of
Twe  \_this nucleus )




rExample I: Nuclear alpha decay

* Tunneling probability can be very |

IOW.

*E.g., alpha-decay of 238U nucleus, has a half-life
due to alpha decay of t©=4.5x 10° years!

*See Eq. (113): Exponential dependence on E and L.
-




rExample I1: Nuclear fusion in the sun

* Tunnelling 1s also crucial 1n the 1nverse process.

* How does a proton get into the strong force well?

*In solar nuclear fusion: p+p =» pp (= pn + e* + V)




rExample I1: Nuclear fusion in the sun

* Barrier energy
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* Mean thermal energy Eq. (21) can
reach this at a temperature

T~ 10V K

*Solar core “only”

T~15%x10"K




rExample I1: Nuclear fusion in the sun

* With those numbers, 1t would be extremely unlikely
to get a proton to fuse with another.

* But, luckily, the required energy 1s substantially
reduced since proton can tunnel to its partner

7




rExample II1: Scanning tunnelling microscope

« Exponential tunneling probability [ = 6_2@

= very high sensitivity to L

STM: [

_—

i

Piezoelectric tube
with electrodes

V U
Sample

——— Tunneling
voltage

Control voltages for piezotube

\

N\

Tunneling

N

Distance control
current amplifier  and scanning unit

L

~

Data processing

and display

0.1 nm lateral resolution

0.01 nm depth resolution
J




3.3.3) Quantum reflection

Let us now consider the same potential as in 3.3.2)
but with energies E>U

AN ~
EWE T2 e
E W
‘ Uo
én-m-{ .
...1f energy 1s more than barrier height.
! >
O £ o4

Classically, particle with that energy will always
pass barrier. Quantum?



Quantum reflection

Again our i I
three region E e
calculation
| Uo
(1) (1)
* >
We find - X
@uantum reflection (114) )

&R > (), T < 1 forreflection of a barrier even if E>Uj

_




3.3.4) The Quantum Harmonic Oscillator

We had started this lecture with the classical

harmonic oscillator
near equilibrium this is

Q: Why is HO so important? a harmonic oscillator
- WY ant’

\

|Consider any physical system
~ with an energy landscape..~. s




The Quantum Harmonic Oscillator

Now let the potential for the particle U(x) be

5

Newton’s Eq.
c.f. section 1.2.) |
d? d o)
—x(f) = ——U Ux) = —mw“x
mdt2X() dx ) ( ) 9
d2
mﬁx(t) = — mw’x
d? — :
—x(f) = — w’x ;



The Quantum Harmonic Oscillator /,>g

Can we now understand the quantum version?
U(x): Lot
Q: What do we expect? (x): LIRS
A: Quantized energy levels?

Write again TISE:

2m 0x?

N S
E,¢,(x) = oo T ymex ¢, (x) (115)

Solution methods now more complicated. Turns out
the normalisable solutions are...

(PHY 304)



The Quantum Harmonic Oscillator

~
Solution of TISE for the harmonic oscillator

2

1 x)=NH (x/ e_;?
E = hw <n+—> ¢n( ) n( )
9) h
0C=1]/—
. n=012,.. ma y

* As seen before, the oscillator has some minimal
energy, called zero-point energy: g — ho

* H (x) are special functions called Hermite-
polynomials. ./ 1s a normalisation factor.

* Ho(x) = I, hence the ground-state wave function ¢y(x)
1s a Gaussian, with zero-point width ¢



The Quantum Harmonic Oscillator
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The Quantum Harmonic Oscillator
i . .
AT~ |_m=+*Most important features 1s

the equal distance in
energy between all levels

T ol ~/ M=2 AL = En+1 o En = hw

* Quantum manifestation of

classical fact that oscillation
i frequency does not depend
7 on amplitude

- X

G * Also implements resonance
catastrophe: Excitation with
quanta of energy

can drive very high excitations




-
Example I:
Bose-Einstein condensate in an atom trap

image courtesy Shannon Whitlock,
Uni Heidelberg / Strassbourg

Cool dilute gas of
87Rb atoms with
lasers while trapped

At lowest temperature,
all atoms go 1nto trap

ground state ¢y(x)
[In Eq. (116)]

Can now see oscillator
ground state in single
picture




-
Example I:
Bose-Einstein condensate in an atom trap

s Thermal cloud Thermal cloud + BEC Pure BEC
1

100
50
S
= 0
N

-50

100

_— 200kHz

-150-100 -50 O 50 100 150 -150-100 -50 O &S0 100 150 -150-100 -50 0 S0 100 150
X (um) X (um) X (um)

0
X (um 100

http://www-personal.umich.edu/~graithel/bose.html
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Example 1I: Quantum-opto-mechanics
(large quantum oscillators)

Optical cavity with
vibrating end mirror:
(a) ===

Kippenberg and Vahala, Opt. Express 15 17172 (2007).
 Position of the mirror = wave length of standing

waves 1n cavity via Eq. (16) [mirror affects light]

* Light intensity affects mirror position via radiation
pressure, photon momentum , see section 2.2.5)
[light affects mirror] (driven oscillator, section 1.2) )




-
Example 1I: Quantum-opto-mechanics
(large quantum oscillators)

Optical cavity with  Qscillator driving force by light
vibrating end mirror:

(a)

D E———

Klppenberg and Vahala, Opt. Express 1517172 (2007)

(b)
4,000
Qm/27 12.5 kHz 814 kHz 57.8 MHz 134 kHz 12.7 Hz
Qm 18,400 10,000 2,900 1.1-10° 19,950
Meff 24 ng 190 pg 15 ng 40 ng ~1g

L Ref. [34] [26,27] [22,28] [30] [29] J
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Example 1I: Quantum-opto-mechanics
(large quantum oscillators)

e Succeeds to cool nano-mechanical oscillator of

mass m=2311fg=3.1x10"'%kg
to almost its quantum mechanical oscillator

ground state n =0 1n Eq. (116).

J. Chan et al., Nature 478 89 (2011).




3.3.5) The correspondence principle

Let us again re-visit the correspondence principle (3.1.9)

;o
For large n, U(x) V]

spatial average

of | ,(x)|” gives
the classical

probability T E
distribution of | )
the harmonic Eq. (116)

oscillator (brown

! %



g .
Example: The correspondence principle
Same as example section 3.2.1, but mass *=2000,

and much narrower wavepacket

t=0.0

red dot: classical position
(from Newton’s equation)




(. . e
Example: The correspondence principle
Same as example section 3.2.1, but mass *=2000,

and much narrower wavepacket
t=0.0

Movie:
mean of quantum behavior fF|classical.
If width 1s small, quantum/arid classical

shable.




