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These notes are provided for the students of the class above only. 
There is no warranty for correctness, please contact me if you spot a mistake.  

3.3) Quantum problems in one dimension 

The “particle in a box” already was our first quantum 
problem in one dimension.

Let us check out some more, which illustrate 
essential concepts of quantum physics and can 
actually be solved fully.

Most more complicated problems can only be solved 
approximately or numerically (with a computer).



3.3.1) Particle in Finite box  

Of course, and infinite energy box U(x) does not exist

New realistic box potential:

What changes compared to section 3.2.2.1) ???

En < U0

Assume:

U(x) =

0, 0 ≤ x ≤ L
U0,  otherwise

(108)



Particle in Finite box  

U(x) =

0, 0 ≤ x ≤ L
U0,  otherwise

Most importantly, we can no longer allow the earlier 
argument why                       outside the box.ϕn(x) = 0

For calculation we have to allow                   outsideϕn(x) ≠ 0



Particle in Finite box  

Differential equation (TISE) can be solved in each region

Calculation, split 
into regions:

Enϕn(x) = (−
ℏ2

2m
∂2

∂x2
+ U(x)) ϕn(x)

U(x) =

0, 0 ≤ x ≤ L
U0,  otherwise

Enϕn(x) = (−
ℏ2

2m
∂2

∂x2
+ U0) ϕn(x)

Region I

(I)

Enϕn(x) = (−
ℏ2

2m
∂2

∂x2 ) ϕn(x)

Region II

(II) Enϕn(x) = (−
ℏ2

2m
∂2

∂x2
+ U0) ϕn(x)

Region III

(III)



Particle in Finite box  

Let’s look at regions I, III  
first:

Enϕn(x) = (−
ℏ2

2m
∂2

∂x2
+ U0) ϕn(x)

Solution: In region I: ϕI = Ceax + De−ax

In region III: ϕIII = Feax + Ge−ax

[verify by insertion into (110)]

(109)

Rewrite: ∂2

∂x2
ϕn(x) − a2ϕn(x) = 0 a =

2m(U0 − En)
ℏ

(110) (111)

(I) (II) (III)

real:



Particle in Finite box  

ϕI = Ceax + De−ax ϕIII = Feax + Ge−ax

Need wave function to go to zero at x → ± ∞
Thus D=0,  F=0

(I) (II) (III)

0 L



ϕI = Ceax ϕIII = Ge−ax

Finally:          and            have to be continuous at 
x=0 and x=L.

ϕn(x) ∂
∂x

ϕn(x)

(I) (III)

Within box, can use Eq. (103) as before.
ϕII = A sin (kx) + B cos (kx)

k =
2mE
ℏ

(II)

Particle in Finite box  

(112)

0 L



Particle in Finite box  

Drawing version of patching together



Particle in Finite box  
Math version of patching  
together

Region I Region II Region III

ϕn(x)

∂
∂x

ϕn(x)

ϕI(0) = ϕII(0) ϕII(L) = ϕIII(L)

∂
∂x

ϕI
x=0

=
∂
∂x

ϕII
x=0

∂
∂x

ϕII
x=L

=
∂
∂x

ϕIIi
x=L

Four equations + normalisation =5 equations, 
only 4 unknowns A,B,C,G

Only for some k have solution => quantisation again

(I) (II) (III)



Particle in Finite box  
•The higher U0, the closer 
it becomes to 3.2.2.1)

•The lower U0, 
the more the 
wave-function 
penetrates into 
the classically 
forbidden 
region

(I) (III)(II)



3.3.2) The tunnel effect 

We saw that a quantum particle can go where a 
classical particle can’t go….what with a barrier?

(this is like a flipped finite well)

E
…if energy is less than barrier height.
Q: Classically?



The tunnel effect 
Again can solve TISE in regions

Make an Ansatz based on free particle wave-functions 
[Eq. (84) , t=0]

(III)(II)

Incoming particle Transmitted particle

Reflected particle

????
(I)

Above, k symbolizes wave number. +k is a wave 
moving to the right, -k to the left. Always, the 
particles has energy E.



The tunnel effect 

(III)(II)(I)

ϕI = 1 × exp(ikx)

Wavenumber set by energy k =
2mEn

ℏ

+ R exp(−ikx)
ϕIII = T exp(ikx)

T Transmission probability

R Reflection probability

????

Inside E<U0, use 
earlier results



The tunnel effect 

(III)(II)(I)

ϕI = 1 × exp(ikx)

+ R exp(−ikx)
ϕIII = T exp(ikx)

ϕII = Aeax + Be−ax

a =
2m(U0 − En)

ℏ



The tunnel effect 
Solution again using continuity

Conservation of probability 1 = R+T

High barrier

Small T

Low barrier

Larger T

note we draw the real part of Ψ only!!!



The tunnel effect 

We find barrier transmission probability

T = e−2κL κ =
2m(U0 − E)

ℏ
(113)

•In principle always nonzero: quantum particle can 
“tunnel” through the barrier.

•In practice exponential dependence on barrier 
depth L and strength U: only big if κL ∼ 1



Example I: Nuclear alpha decay
•Tunnel effect only important for microscopic objects.
•Consider atomic-nucleus (3.1.4). A fragment of 
that can be viewed as an alpha-particle.

+
+

++
rnuc

Alpha particle bound 
by strong force while 
inside the nucleus

Alpha particle repelled 
by coulomb force 
once outside the 
nucleus

E

For this E, what can 
happen?



Example I: Nuclear alpha decay

+
+

rnuc

Alpha particle may 
tunnel out of nucleus 
with some probability

++

•Tunnel effect only important for microscopic objects.
•Consider atomic-nucleus (3.1.4). A fragment of 
that can be viewed as an alpha-particle.

Probability of 
tunnelling sets the 
alpha decay rate of 
this nucleus



Example I: Nuclear alpha decay

•Tunneling probability can be very low.
•E.g., alpha-decay of 238U nucleus, has a half-life 
due to alpha decay of   τ = 4.5 x 109 years!

•See Eq. (113): Exponential dependence on E and L.



Example II: Nuclear fusion in the sun
•Tunnelling is also crucial in the inverse process. 
•How does a proton get into the strong force well?

•In solar nuclear fusion: p+p ➜ pp (➜ pn + e+ + ν)

-

+ +

++

-
-

-



Example II: Nuclear fusion in the sun
•Barrier energy

-

+ +

++

-
-

-

EB

EB =
e2

4πϵ0rnuc

= 1.4 MeV

•Mean thermal energy Eq. (21) can 
reach this at a temperature

T ≈ 1010 K
•Solar core “only”

T ≈ 1.5 × 107 K

= 1 fm



Example II: Nuclear fusion in the sun
•With those numbers, it would be extremely unlikely 
to get a proton to fuse with another.

-

+ +

++

-
-

-
•But, luckily, the required energy is substantially 
reduced since proton can tunnel to its partner



Example III: Scanning tunnelling microscope
•Exponential tunneling probability T = e−2κL

⟹ very high sensitivity to L
STM:

L
0.01 nm depth resolution

0.1 nm lateral resolution



3.3.3) Quantum reflection 

Let us now consider the same potential as in 3.3.2) 
but with energies E>U

Classically, particle with that energy will always 
pass barrier. Quantum?

E

…if energy is more than barrier height.

E, Ψ

U0



Quantum reflection 

Again our 
three region 
calculation

We find

Quantum reflection
for reflection of a barrier even if E>U0R > 0, T < 1

(114)

(III)(II)(I)

T

R
U0

E



3.3.4) The Quantum Harmonic Oscillator 

We had started this lecture with the classical 
harmonic oscillator

Consider any physical system 
with an energy landscape….

x

near equilibrium this is 
a harmonic oscillatorQ: Why is HO so important?

U(x)



The Quantum Harmonic Oscillator 
Now let the potential for the particle U(x) be

(xx)
U(x) =

1
2

mω2x2

Newton’s Eq.  
c.f. section 1.2.)

m
d2

dt2
x(t) = −

d
dx

U(x)

m
d2

dt2
x(t) = − mω2x

d2

dt2
x(t) = − ω2x



The Quantum Harmonic Oscillator 

Can we now understand the quantum version?
Q: What do we expect?
A: Quantized energy levels?

(115)

Write again TISE:

Enϕn(x) = (−
ℏ2

2m
∂2

∂x2
+

1
2

mω2x2) ϕn(x)

Solution methods now more complicated. Turns out 
the normalisable solutions are…

(PHY 304)

U(x)



The Quantum Harmonic Oscillator 

(95)

Solution of TISE for the harmonic oscillator

(116)
ϕn(x) = 𝒩Hn(x/σ)e− x2

2σ2

En = ℏω (n +
1
2 ) σ =

ℏ
mωn = 0,1,2,…

•            are special functions called Hermite-
polynomials.         is a normalisation factor.
Hn(x)

𝒩
•H0(x) = 1, hence the ground-state wave function                   
is a Gaussian, with zero-point width    

ϕ0(x)
σ

•As seen before, the oscillator has some minimal 
energy, called zero-point energy: (117)E0 =

ℏω
2



The Quantum Harmonic Oscillator 



The Quantum Harmonic Oscillator 

•Quantum manifestation of 
classical fact that oscillation 
frequency does not depend 
on amplitude

•Also implements resonance 
catastrophe: Excitation with 
quanta of energy                         
can drive very high excitations 

 

ΔE

•Most important features is 
the equal distance in 
energy between all levels
ΔE = En+1 − En = ℏω



Example I:  
Bose-Einstein condensate in an atom trap

Cool dilute gas of 
87Rb atoms with 
lasers while trapped

Can now see oscillator 
ground state in single 
picture

image courtesy Shannon Whitlock,  
Uni Heidelberg / Strassbourg

At lowest temperature, 
all atoms go into trap 
ground state ϕ0(x)
[in Eq. (116)]



Example I:  
Bose-Einstein condensate in an atom trap

http://www-personal.umich.edu/~graithel/bose.html



Example II: Quantum-opto-mechanics

Optical cavity with 
vibrating end mirror:

(large quantum oscillators)

mechanism [25] (back-action cooling) has been exploited to cool cantilevers [26, 27], micro-
toroids [28] and macroscopic mirror modes [29] as well as mechanical nano-membranes [30].
We note that this technique is different than the earlier demonstrated radiation-pressure feed-
back cooling [31, 32], which uses electronic feedback analogous to “Stochastic Cooling” [33]
of ions in storage rings and which can also provide very efficient cooling as demonstrated
in recent experiments [34–36]. Indeed, research in this subject has experienced a remarkable
acceleration over the past three years as researchers in diverse fields such as optical microcav-
ities [1], micro and nano-mechanical resonators [2] and quantum optics pursue a common set
of scientific goals set forward by a decade-old theoretical framework. Subjects ranging from
entanglement [37, 38]; generation of squeezed states of light [12]; measurements at or beyond
the standard quantum limit [11, 39, 40]; and even to tests of quantum theory itself are in play
here [41]. On the practical side, there are opportunities to harness these forces for new metrol-
ogy tools [36] and even for new functions on a semiconductor chip (e.g., oscillators [22, 23],
optical mixers [42], and tuneable optical filters and switches [43, 44]. It seems clear that a new
field of cavity optomechanics has emerged, and will soon evolve into cavity quantum optome-
chanics (cavity QOM) whose goal is the observation and exploration of quantum phenomena
of mechanical systems [45] as well as quantum phenomena involving both photons and me-
chanical systems.
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Fig. 1. (a)A cavity optomechanical system consisting of a Fabry Perot cavity with a har-
monically bound end mirror. (b): Different physical realizations of cavity optomechanical
experiments employing cantilevers [34], micro-mirrors [26, 27], micro-cavities [22, 28],
nano-membranes [30] and macroscopic mirror modes [29]. Red and green arrows repre-
sent the optical trajectory and mechanical motion.

The realization of dynamical, opto-mechanical coupling in which radiation forces mediate
the interaction, is a natural outcome of underlying improvements in the technologies of optical
(micro) cavities and mechanical micro (nano-) resonators. Reduction of loss (increasing optical
and mechanical Q) and reductions in form factor (modal volume) have enabled a regime of
operation in which optical forces are dominant [22–24,26–30]. This coupling also requires co-
existence of high-Q optical and high-Q mechanical modes. Such coexistence has been achieved
in the geometries illustrated in Figure 1. It also seems likely that other optical microcavity ge-
ometries such as photonic crystals [46] can exhibit the dynamic back-action effect provided
that structures are modified to support high-Q mechanical modes.
To understand how the coupling of optical and mechanical degrees of freedom occurs in

#88348 - $15.00 USD Received 8 Oct 2007; revised 7 Dec 2007; accepted 7 Dec 2007; published 10 Dec 2007
(C) 2007 OSA 10 December 2007 / Vol. 15,  No. 25 / OPTICS EXPRESS  17176

Kippenberg and Vahala,  Opt. Express 15 17172 (2007).

•Position of the mirror ⇒ wave length of standing 
waves in cavity via Eq. (16) [mirror affects light]

•Light intensity affects mirror position via radiation 
pressure, photon momentum , see section 2.2.5) 
[light affects mirror] (driven oscillator, section 1.2)



Example II: Quantum-opto-mechanics

Optical cavity with 
vibrating end mirror:

Oscillator driving force by light

(large quantum oscillators)

mechanism [25] (back-action cooling) has been exploited to cool cantilevers [26, 27], micro-
toroids [28] and macroscopic mirror modes [29] as well as mechanical nano-membranes [30].
We note that this technique is different than the earlier demonstrated radiation-pressure feed-
back cooling [31, 32], which uses electronic feedback analogous to “Stochastic Cooling” [33]
of ions in storage rings and which can also provide very efficient cooling as demonstrated
in recent experiments [34–36]. Indeed, research in this subject has experienced a remarkable
acceleration over the past three years as researchers in diverse fields such as optical microcav-
ities [1], micro and nano-mechanical resonators [2] and quantum optics pursue a common set
of scientific goals set forward by a decade-old theoretical framework. Subjects ranging from
entanglement [37, 38]; generation of squeezed states of light [12]; measurements at or beyond
the standard quantum limit [11, 39, 40]; and even to tests of quantum theory itself are in play
here [41]. On the practical side, there are opportunities to harness these forces for new metrol-
ogy tools [36] and even for new functions on a semiconductor chip (e.g., oscillators [22, 23],
optical mixers [42], and tuneable optical filters and switches [43, 44]. It seems clear that a new
field of cavity optomechanics has emerged, and will soon evolve into cavity quantum optome-
chanics (cavity QOM) whose goal is the observation and exploration of quantum phenomena
of mechanical systems [45] as well as quantum phenomena involving both photons and me-
chanical systems.
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Fig. 1. (a)A cavity optomechanical system consisting of a Fabry Perot cavity with a har-
monically bound end mirror. (b): Different physical realizations of cavity optomechanical
experiments employing cantilevers [34], micro-mirrors [26, 27], micro-cavities [22, 28],
nano-membranes [30] and macroscopic mirror modes [29]. Red and green arrows repre-
sent the optical trajectory and mechanical motion.

The realization of dynamical, opto-mechanical coupling in which radiation forces mediate
the interaction, is a natural outcome of underlying improvements in the technologies of optical
(micro) cavities and mechanical micro (nano-) resonators. Reduction of loss (increasing optical
and mechanical Q) and reductions in form factor (modal volume) have enabled a regime of
operation in which optical forces are dominant [22–24,26–30]. This coupling also requires co-
existence of high-Q optical and high-Q mechanical modes. Such coexistence has been achieved
in the geometries illustrated in Figure 1. It also seems likely that other optical microcavity ge-
ometries such as photonic crystals [46] can exhibit the dynamic back-action effect provided
that structures are modified to support high-Q mechanical modes.
To understand how the coupling of optical and mechanical degrees of freedom occurs in

#88348 - $15.00 USD Received 8 Oct 2007; revised 7 Dec 2007; accepted 7 Dec 2007; published 10 Dec 2007
(C) 2007 OSA 10 December 2007 / Vol. 15,  No. 25 / OPTICS EXPRESS  17176

Kippenberg and Vahala,  Opt. Express 15 17172 (2007).



Example II: Quantum-opto-mechanics
(large quantum oscillators)

In the resolved-sideband limit, where vm/k. 1, driving the system
with a laser (frequency, vl) tuned to the red side of the optical cavity
(detuning, D;vo2vl5vm), creates an optically induced damp-
ing, cOM, of the mechanical resonance25. In the weak-coupling
regime (cOM=k), the optical back-action damping is given by
cOM5 4g2nc/k, where nc is the average number of drive-laser photons
stored in the cavity and g is the optomechanical coupling rate between
the mechanical and optical modes. This coupling rate, g, is quantified
as the shift in the optical resonance for an amplitude ofmotion equal to

the zero-point fluctuation amplitude (xzpf~(B=2mvm)
1=2, wherem is

the motional mass of the localized acoustic mode and B is Planck’s
constant divided by 2p). The optomechanical damping, which is a
result of the preferential scattering of drive photons into the upper-
frequency sideband, also cools the mechanical mode. For a quantum-
limited drive laser, the phonon occupancy of the mechanical oscillator
can be reduced from nb~kBTb=Bvm?1 to !n~nb= 1zCð Þznmin,
where kB is Boltzmann’s constant and C; cOM/ci is the cooperativity.
The residual scattering of drive photons into the lower-frequency
sideband limits the cooled phonon occupancy to nmin5 (k/4vm)

2,
which is determined by the level of sideband resolution25.
The drive laser, in addition to providing mechanical damping and

cooling, can be used to measure the mechanical and optical properties
of the system through a series of calibratedmeasurements. In a first set
of measurements, we use the noise power spectral density (PSD) of
the drive laser transmitted through the optomechanical cavity to
perform spectroscopy of the mechanical mode. As shown in Sup-
plementary Information, the noise PSD of the photocurrent generated
by the transmitted field of the drive laser with red-sideband detun-
ing (D5vm) yields a Lorentzian component of the single-sided
PSD proportional to Sb vð Þ~!nc

!
v{vmð Þ2z c=2ð Þ2

" #
, where

c5 ci1 cOM5 ci(11C) is the total mechanical damping rate. For a
blue laser detuning of D52vm, the optically induced damping is
negative (cOM524g2nc/k) and the photocurrent noise PSD is pro-
portional to Sb{ vð Þ~ !nz1ð Þc

!
v{vmð Þ2z c=2ð Þ2

" #
. Typical mea-

sured noise power spectra under low-power laser drive (nc5 1.4,
C5 0.27), for both red detuning and blue detuning, are shown in
Fig. 3a. Even at these small drive powers, the effects of back-action
on the measured spectra are evident, with the red-detuned drive
broadening the mechanical line and the blue-detuned drive narrowing
the line. The noise floor in Fig. 3a (shaded in grey) corresponds to the
noise generated by the EDFA used to pre-amplify the transmitted
drive-laser signal before photodetection, and is several orders of mag-
nitude greater than the electronic noise of the photoreceiver and the
real-time spectrum analyser.
Calibration of the EDFA gain, along with the photoreceiver and

real-time spectrum analyser photodetection gain, makes it possible
to convert the measured area under the photocurrent noise PSD into
a mechanical mode phonon occupancy. As described in detail in
Supplementary Information, we perform these calibrations, alongwith
measurements of low-drive-power (C= 1), radio-frequency spectra of
both detunings (D56vm), to provide accurate, local thermometry of
the optomechanical cavity. An example of this formof calibratedmode
thermometry is shown in Fig. 3b, where we plot the opticallymeasured
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Figure 2 | Experimental set-up. A single, tunable, 1,550-nm diode laser is
used as the cooling andmechanical transduction beam sent into the nanobeam
optomechanical resonator cavity held in a continuous-flow helium cryostat. A
wavemetre (WM) is used to track and lock the laser frequency, and a variable
optical attenuator (VOA) is used to set the laser power. The transmitted signal
is amplified by an erbium-doped fibre amplifier (EDFA) and detected on a
high-speed photodetector (D2) connected to a real-time spectrum analyser
(RSA), where the mechanical noise power spectrum is measured. A slowly
modulated probe signal used for optical spectroscopy and calibration is
generated from the cooling laser beam using an amplitude electro-optic
modulator (EOM) driven by a microwave source (RFSG). The reflected
component of this signal is separated from the input by an optical circulator
(CIRC), sent to a photodetector (D1) and then demodulated using a lock-in
amplifier (LIA). Paddle-wheel fibre polarization controllers (FPCs) are used to
set the laser polarization at the input to the EOM and the input to the
optomechanical cavity. For more detail, see Supplementary Information.
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Figure 1 | Optomechanical resonator with phononic shield. a, Scanning
electron microscope (SEM) image of the patterned silicon nanobeam and the
external phononic bandgap shield. b, Enlarged SEM image of the central cavity
region of the nanobeam. c, Top: normalized electric field (colour scale) of the
localized optical resonance of the nanobeam cavity, simulated using the finite-
element method (FEM). Bottom: FEM simulation of the normalized
displacement field of the acoustic resonance (breathing mode), which is
coupled by radiation pressure to the co-localized optical resonance. The

displacement field is indicated by the exaggerated deformation of the structure,
with the relative magnitude of the local displacement (strain) indicated by the
colour. d, SEM image of the interface between the nanobeam and the phononic
bandgap shield. e, FEM simulation of the normalized squared displacement
field amplitude of the localized acoustic resonance at the nanobeam–shield
interface, indicating the strong suppression of acoustic radiation provided by
the phononic bandgap shield. The colour scale represents log[x2/max(x2)],
where x is the displacement field amplitude.
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•Succeeds to cool nano-mechanical oscillator of 
mass                                                                         
to almost its quantum mechanical oscillator 
ground state               in Eq. (116).

m = 311 fg = 3.1 × 10−18 kg

n = 0



3.3.5) The correspondence principle 
Let us again re-visit the correspondence principle (3.1.9)

|ϕ100(x) |2

Eq. (116)

For large n, 
spatial average 
of               gives 
the classical 
probability 
distribution of 
the harmonic 
oscillator (brown 
line)

|ϕn(x) |2

[Time averaged: It spends less time at centre, where it is fast]

U(x)



Example: The correspondence principle 
Same as example section 3.2.1, but mass *=2000, 
and much narrower wavepacket

red dot: classical position 
 (from Newton’s equation)



Example: The correspondence principle 
Same as example section 3.2.1, but mass *=2000, 
and much narrower wavepacket

Movie:  
mean of quantum behavior = classical. 
If width is small, quantum and classical 
dynamics become indistinguishable.


