k PHY 106 Quantum Physics
-‘; V e e Instructor: Sebastian Wuster, IISER Bhopal, 2018

These notes are provided for the students of the class above only.
There is no warranty for correctness, please contact me if you spot a mistake.

3.2) Introduction to Quantum Mechanics

Seen 1n week 7 that matter-wave concept can
successfully explain a lot about atoms.

However we need now a formal basis.

Classically: Quantum:
— N 777
Newton Eq. — F' =ma Q: what is needed here?

. _. _ A:rawave-equation (c.f. section 2.1.2.)
Trajectory  p (1) r(1) Wave-function P(7,1)



3.2.1) Time dependent Schrodinger’s equation

Re-consider wave function Eq. (57):

W(x, 1) = A cos[27 (—— — )]
AdB

We know from week 3 this 1s a solution of Eq. (13):

> Wt = —— 2w
—Y(x, 1) = X,
o0x2 A202 o2

P _E




3.2.1) Time dependent Schrodinger’s equation

Re-consider wave function Eq. (57):
W(x, 1) = A cos[27 (—— — )]
Aap
We know from week 3 this 1s a solution of Eq. (13):

Problem: should be part of
solution only. Not of
equation (see Newton)

Turns out can’t get 1t to work with ¥ above, need....



Excursion: Complex numbers and functions

Earlier, we thought 4/—1 = ? does not work.

*Now let’s just define v/ —1 =i (76)

[ Imaginary unit

* We call numbers containing i complex numbers

z=a+1b
A

real part of 7

(a,b) are usual real numbers



Excursion: Complex numbers and functions

e Some ramifications:

Every polynomial equation now has a solution, e.g.:
7"+ a;z+ay=0

Example:
224+272+410=0 & (z+1)>’=-9
Complex solution:  z.=—1=%3i
complex plane:
 Visualisation:

Can view z as 2D vector
and draw 1n 2D plane:

< (Cl, b) ° -3i.



Excursion: Complex numbers and functions
z+5

z—2

* Functions of complex numbers, e.g. f(z) =

* Most important example for this course

O n

Z
exp(z) = —
—n!

e Find formula:

exp(a + ib) = exp(a)[cos(b) + i sin(b)] (78)



Excursion: Complex numbers and functions

exp(ib) = cos(b) + i sin(b) (78b)

*In the complex plane:

complex plane:
exp(b = 0) = 1
exp(b = n/2) = i
exp(b=n)=—1

-1 1 >

xp(b = 37/4) = — i

| . exp(b =2x) =1
b=rnl4)=——(~1+1)
exp(b = n/4) \/5 l

-21



Excursion: Complex numbers and functions

* Can write any complex number as

z = rexp(ig) (79)

«Complex conjugate z* =a —1ib (80)

complex plane:

i

«Modulus | z|* = zz* |z| =/ zz* (81)

-21



Excursion: Complex numbers and functions

* We can now express sin and cos using Eq. (77b):

1, . .
cos(x) = 5 (elx + e"x) (82a)
'()—i(’“— ) 82b
sin(x) = > e e (82b)

* This makes your life better. Can
now forget about trig-identities.

e Can simply use
exp(a + b) = exp(a)exp(b) (83)

...for manipulations such as 1n section (2.3.1.)



Schrodinger’s equation

With complex numbers, let us fix new:

‘Quantum wave function of free particle A
. Y(x,t) = Aexpli(kx — wt)] (84) y
. E
- Sill: k=% w=—

*This replaces Eq. (54). Forget Eq. (54)!!!

*Note, probability density:
px, 1) = |¥(x, 1) |2 = |A |2 = const .



Schrodinger’s equation

With complex numbers, let us fix new:

‘Quantum wave function of free particle A
. Y(x,t) = Aexpli(kx — wt)] (84) y
Drawing: o ¥ N

1 2
A

o h VA AR

exp(ib) = cos(b) + i sin(b)



Schrodinger’s equation

With complex numbers, let us fix new:

‘Quantum wave function of free particle A
. Y(x,t) = Aexpli(kx — wt)] (84) y
o j g |A|2
i o

Now let us re-attempt finding a wave-equation that
has (84) as a solution....



Schrodinger’s equation ~h Y=

From Eq. (84): W(x, 1) = Aexpli(kx — wt)]

0 0’
pPx, 1) = — ih—P(x, ) pP(x, 1) = — h*—Y(x, 1)
(84b)  Ox ox?
0
Also: E¥(x,t) = zhE‘P(x, t)
Suppose particle feels potential energy U(X,t):
2
E = P F U(x, 1)
2m

try: h 0 Y(x, 1) h” o + U(x,t) | Y(x,1)
ih—Y(x,t) =1 — X, X,
ot 2m 0x?



Schrodinger’s equation

This gives indeed the

\_

ﬁl‘ime-dependent Schrodinger equation
(TDSE) of particle in 1D in a potential U(x,t)

N ( R )
ih—Y(x,n) =1 — + U(x,t) | P(x, 1) (85)

~

v,

ot 2m 0x?
*The classical equivalent 1s
F=ma=mi=—-—U®,1) (86)
0x

It contains only the problem (particle, potential)

and can give any dynamics [unlike Eq. (77)]



Schrodinger’s equation

cl'ime-dependent Schrodinger equation
(TDSE) of particle in 1D in a potential U(x,t)

h? o2

0
- VY] — | _ VY 85
lh_at (x,1) = ( o + Ul(x, t)) (x, 1) (85)

~

\_ Y,
*In 3D ( (87)

'ha‘lj( 1) n’ & + > + > + U( t)\ Y( 1)
LNn— X, 0 K9 — - xa R x9 %9
o ot AT P | P

*Note, we haven’t really derived Eq. (85). It cannot
be derived



-
Example: The free particle

We had used the wavetunction

Y(x,t) = Aexpli(kx — wt)] repeat (84)

to associate 0 ., 0
E... =ih—... p...=—ih—...
ot 0x

in motivating the TDSE Eq. (85).

For U(x,t)=0 the function (84) is 1n fact a solution of
the TDSE, 1f p?

2m

This 1s the case for a free particle, which 1s not
subject to any potential.
Verification...




-
Example (contd.)

Free particle wave function
Y(x,t) = Aexpli(kx — wt)] repeat (84)

TDSE / \
0 h* o

h—WY(x,t) = — WY(x,t
l ot () 2m 0x? (6 1)

2

ih(—iw)¥Y(x,1) = (—;—)(ik)z‘l’(x, r)

m
h2k?
hoP(x, 1) = Y(x, 1)
2m
p2
hw = hv =E = Ey. hk =p matches
m




-
Example: Numerical solution of TDSE

*TDSE 1s a first-order differential equation in time

o[f we know W(x,r=0) wecanfind W(x,r) at
all later times.

o] et’s start with:
_ (x=xp)?

P,t=0)=SNe 2=

*Note, this 1s a Gaussian wave packet, c.f. Sec.
(2.3.3) with ko = 0.




-

Example: Numerical solution of TDSE

t=0.0

(x — x())2

P, t=0)|>= N2 R




-

Example: Numerical S(())l(}ltion of TDSE
t=0.

20 -15  -10 -5 0 5 10 15 20




~

Example: Numerical solution of TDSE

* We see initially behavior like we would expect
classically (particle “falling down” potential
gradient)

* But already 1t always has a distribution of
positions

» At late time, lots of wave like interference
effects are visible.




Linearity and superposition

*Since now all information about the dynamics/
motion of a particle 1s encoded 1n the wave
function, mechanics becomes probabilistic

*The TDSE 1s linear. This means we have again:

‘Superposition principle A

If ¥,(x,5) and Y,(x,» are solutions to the
kTDSE, SO IS Wi(x,0) =d,¥,(x, 1) + d, W, (x, 1) (88)

W,

In analytical solutions, we have to take care of....



Schrodinger’s equation, admissible solutions

v,

0 | V
*single-valued . ’% \s
X

* Normalizable de |‘P(x t)| =1

e continuous }\ ( ) | ! |

lim W(x) = lim ¥(x) / 7 7

xxg xTxg

 differentiable with continuou derlvatlves

)
:/
\ /r'
4

d d
Iim —%Y(x) = lim —%¥(x)

xlxg dx xTxg dx



Expectation values

Statistics:
If x 1s a random variables which can have
outcomes xx with probability pr we define

Expectation value E[x] = ) xp, (89)
k

* Expectation values corresponds to the average over
a very large number of realisations.

£ Example: Throw a 6-sided dice.

xe=k ,k=1,..,6 1+2+3+4+5+6
Y Elx] = =35

_ 6
Pr =
L 6




Expectation values

*For a continuous range of possible outcomes, Eq.
(89) becomes Efx] = J dx x p(x) (90)

*We can now apply this to the quantum wave
function to find the

(Position expectation value of particle with
wavefunction Y(x,?)

\_

*This 1s the average over many position
measurements of 1dentically prepared particles

(x) = J dx x| P, 0> (91)
— 00 J




Operators

How do we find expectation values of
momentum or energy”?

e Statistics: {(p) = JdPPP(P)

But wave-function does not give us probability
of momentum directly. We must use....

(Momentum operator p=- ihai (92))
X

* Motivation: Eq. (84b)

A
* Notation: We denote all operators with “hat”.



A

Operators An operator O 1is a map of a function
onto another function: 0 : f(x) » g(x)

f(x) = exp[—x7] g(x) = — 2xexp[—x7]

[recall “differentiation by drawing” chapter 1]



Operators

Discretize the functions and put them 1nto a vector:

et ‘\Li(:Yl%x? f——
_f (xo)- 0
Now: = —
o) ow: g(x) = ——f(x)
=
flx) Can map operator onto

matrix: ? _ QJ‘C’



Operators

For the specific derivative operator, we can

even approximately write an explicit form:
_ fxg+ Ax) — f(xg — Ax)

. . . 0
Definition of derivative / slope: —/»1._,

Ax




Summary, operators

We can then think of operators as matrices

Vo

0—>g

(matrices map vectors onto other vectors,
Operators map functions onto other functions)

O: vV ->w, w=0V

O : f(x) = g(x)



Operators |
measurable quantity

It turns out:... \

" In quantum mechanics, every observable is

_ represented by an operator )
Its expectation value 1s then:
rExpectation value of any operator A
(0) = rc dx P*(x, ) O¥(x, 1) (93)
\_ — Y,

*¢c.g. momentum expectation value:

(P) = r" dx W*(x, t)<—ihi> Y(x,r) (94)

ox



o!! Ordering 1n Eq. (93) 1s important for differential
operators

Example: Gaussian wave packet

Convert our earlier Gaussian wave-packet Eq. (42),
into one for complex waves, as Eq. (84)

1

P(x) = [ dk gk explikx) |
Var - X :L\ vi®

(99)
1 . (k’i—//
~ k — e 20k Nl
8(k) , 1 Lk

\/?Z'Uk w

2

Y(x) = : e'koXe 27
oD €0

Now: Idx|\v<x>|2 =1
y.




-
Example (contd.)

Let us calculate the expectation value of
position (¥) and momentum (p)

’ . ® ° (97)
Let’s slightly ave packet: W(x) = p—
(%) = J dx P*(x)x P(x)
00 1 _ _(x—xo)2
_ J dx—— |k P[e TR 2 x
oo o,
X =X— X
1 (® _ -3’ 1 (® _x
— J' dx e 02 X — J dxe o% (55 + .XO)
\/7_Z'Gx —00 \/;O-X —




-
Example (contd.)

1 " _(x—xzo)2
Y(x) = (7:@%)1/46 e 25 (97)

Split integral into two:
1 = _x
(X) =+ = J dxe = (X + x;)
\/J_Z'Gx —00
1 0 _ﬁ 1 0 x2
= J dxe = X+ x, J dXe = =y
@ —0 \/7_Z'O'x —0 |
_—
=0
asymmetric integrand!

Thus on average, this particle 1s found at position X,
- _J




-
Example (contd.)

For momentum expectation value:

ox

1 00 . _ (x=xp)? 0 | =2
= dx e *k¥e 27 | —jh— | eto¥e 27
—O0

\/7_Z'Gx 0x

. SN JN ¢ TR W,
= d_x e_lkoxe 26)% hkoe_lkoxe 20% _|_ e—lkox _ . e 26)%
\/7_Z'Gx —00 20—)6

excercise
= -+ = Nky = py

A > L 0 1
<p> — J dx W*(x, 1) <—lh—> Yx, 1) Pk = ekoXp T 253

Thus on average, this particle has momentum P
- _J




3.2.2) Time independent Schrodinger equation

Frequently, e.g.) examples in 3.2.1), potential
does not actually depend on time  yix, 1) = U(x)

For example free particle U(x,7) =0

Note we can write Eq. (84) as
Y(x,t) = Aexpli(kx — wt)]

Y(x, 1) = ¢p(x)exp[—iwt] (98)
Insert into TDSE:

0
ihE‘P(x, = ... hoW¥(x,t) = ... E¥Y(x, 1) = ...



Time independent Schrodinger equation

Using this replacement on the lhs, we are led to the

ﬂl‘ime-independent Schrodinger equation A

(TISE) of particle in 1D in a potential U(x)
2 2
B () = (— o

YW + U(x)) ¢, (x) (99)

- ,

*The equation has many solutions n=0, 1,2, ...with
different energies En

[t we start the TDSE on such a solution, 1.e. ¥x.,0) = ¢,

we get (see Eq. 107b later) W (n.1) = (e (99b)

Thus: |ven2=14,01> probability density const!!



Time independent Schrodinger equation

ﬁl‘ime-independent Schrodinger equation A

(TISE) of particle in 1D in a potential U(x,t)
2 2
B, () = (— v

omae TV (x)) Pux) - (100)

\_ _J

* The operator on the rhs. of the TISE 1s so important
that 1t has a special name:

‘Hamiltonian (operator): A
2 72
H=- k 62+U(x) (101)
< 2m ox _

It represents the total energy of the particle



-
3.2.2.1.) Example: Particle in a box

-

We can best understand the relevance of the TISE by
revisiting the example from section 2.4.3) more
mathematically:

We first need a box potential:

. I
O /(! ? 0,0<x<L

oo, otherwise |

Py
—-
\

Finite energy particle can never leave this box.™.




-
Example (contd.)
We shall solve: E,¢,(x) = (—

h? o2

2m 0x?

+ U(X)) P, (x)

First note: ¢ (x) =0 outside the box.
Reason: (A) Let’s use Eq. (93) with 0 = U%)
Expectation value of potential energy
(U@) = ro dx U)| ¢,(x) 1
This would be infinite if ¢,(x) #0 outside box.

(B) Wavefunction must be continuous

[proof: advanced courses]

— Boundary condition ¢,(0) =¢,(L) =0
L (c.f. section 2.4.3)




-
Example (contd.)
Inside the box U=0  E¢,(x) = -

h? 02

2m 0x?

$(x)  (102)

Solution? Revisit section 1.2):
\/2mE \/2mE
qbn(x)zAsin( Zl nx>+Bcos< Zl nx) (103)

[verifty by insertion into (98)]

To fulfill B.C. ¢,(0)=0  B=0

¢n(L) =0 2mEnL = nrx
h n=172,...
2522
We thus again arrive at E = i [= Eq. (65)]

\_ ZMLz




-
Example (contd.)

We have also found the wave-function:

b (x) = A sin(k ) k = % (104)

Finally can find A by requiring normalisation

[Eq.(59)] . 2
| = J [ Fdx > 4=
0 [exercise!]

We now solved our first quantum problem:

~ Solution of TISE for particle in the box

n*hm 2 nm
L, = Sl 2 ¢, (x) = \/% sin(k,x) &k, = —

L v




fa Solution of TISE for particle in the box

n’h’r? 2 i
E, L2 ¢, (x) = \/; sin(k,x) k, = T (105)

\_
1l Ras
energy levels i/
e R _ U see plot legend
o et on next slide!
o) % ‘




‘Legend: Diagrams as on he previous slide
will occur frequently throughout this section
" Potential energy U(x)
R Y A
" } ] { ((b”r n=4 U'i—
Energy values
n=3 7 }
Wave-function
U , hot to scale [has
g | different units!]. The
. /= zero for each of these
e : :
L. IS the green line
- Y,




-
Legend: ... thus if we were carefully  +
drawing this information into separate
diagrams we get:

-"—‘——"__-——_.-Jk

A v 0




-
Example (contd.) o JuE by

Again we can calculate expectation

values...
We find: (%) zg (3) = 0
Q: Exin nonzero. How does (p) =0 o :

make sense?

A: For position, we see probability density in any
state is symmetric wrt. L/2. So mean position L/2.

For momentum, use Eq. (8§2b) A
| 1 . 3
sin(kx) = 5 (e‘kx — e"kx) / ﬁf?\, <_P—-‘;y 7
contains p>0 and p<0!!! (Eq. 55) ~ A [




3.2.3) Operators and eigenvalues
Let us rewrite the TISE we just solved using A(Eq. 101):
Ho (x) = E ¢ (x) (106)

Q: what does that remind you of?

A: Matrix eigenvalue problem:
(103)

AV =4V

eHere A is an (NxN) matrix, v an N component
vector. 4 areal number.



Operators and eigenvalues

We define 1n general

" Operator eigenvalue problem
_ 09, (x) = 0,p,(x) (107)

e O s an operator

«¢,(x)is called eigen-function (“own-function”)

* Oy 1s called eigen-value (“own-value™)

rExample: 3

O=p=-— ihd_ @, (x) = exp(ik,x) 0, = p, = hk,
X

_ Free particle wavefct. ¢(x) 1s an eigen-function of 3




Operators and eigenvalues

In this language we understand the

" TISE as eigenvalue problem A
Ho (x) = E ¢ (x) (106, rep)
of the Hamiltonian y

*the solutions ¢, (x) are called eigen-states of
the problem

« £, are the allowed eigen-energies of the problem

(c.f. e.g. atom energies Eq. (75) )



3.2.4.) Time-dependence from TISE

While the TISE 1s time-independent, 1t still allows us
to find the time-evolution:

Suppose the 1nitial state for particle in the box 1s

Y(x, 1= 0) = ¢,(x)

with ¢,(x) from Eq. (105). Assume W(x, 1) = c()¢p,(x)
Eq. (99) TISE
!

0 R R
in [%cm] b, (x) = ih—W(x r>f= HY(x, 1) = cOA},(x) = c(E, b, (x)

Then we have

Eq. (85) TDSE, using Hamiltonian



Time-dependence from TISE

Overall

ihic(t) =FE, (1)
ot

Which has the solution c¢(¥) = s , thus...

(Time-dependence of eigen state
W(x, 1) = ¢ (x)e i

-

(107b)

~

v,

*this justifies comment after Eq. (99)



Time-dependence from TISE

According to (88), we have the superposition principle.
What if we now start 1in a superposition of eigenstates?

W(x, 1 = 0) = % (4.0 + ()]

‘Time-dependence of superposition A

Yx, 1) = L (qﬁa(x)e_i%t + qbb(x)e_i%t ) (107¢c)

L 2
«proof: PHY 304 QM

eramifications: Tutorial 10, online app:
http://www.falstad.com/gm1d/




