3.2) Introduction to Quantum Mechanics

Seen in week 7 that matter-wave concept can successfully explain a lot about atoms.

However we need now a formal basis.

Classically:
Newton $E q . \quad \vec{F}=m \vec{a}$ A: a wave-equation (c.f. section 2.1.2.)

3.2.1) Time dependent Schrödinger's equation

Re-consider wave function Eq. (57):

$$
\Psi(x, t)=A \cos \left[2 \pi\left(\frac{x}{\lambda_{d B}}-\nu t\right)\right]
$$

We know from week 3 this is a solution of Eq. (13):

$$
\begin{gathered}
\frac{\partial^{2}}{\partial x^{2}} \Psi(x, t)=\frac{1}{\lambda^{2} \nu^{2}} \frac{\partial^{2}}{\partial t^{2}} \Psi(x, t) \\
\lambda=\frac{h}{p} \quad \nu=\frac{E}{h}
\end{gathered}
$$

3.2.1) Time dependent Schrödinger's equation

Re-consider wave function Eq. (57):

$$
\Psi(x, t)=A \cos \left[2 \pi\left(\frac{x}{\lambda_{d B}}-\nu t\right)\right]
$$

We know from week 3 this is a solution of Eq. (13):

$$
\begin{align*}
\frac{\partial^{2}}{\partial x^{2}} \Psi(x, t) & =\frac{p^{2}}{E^{2}} \frac{\partial^{2}}{\partial t^{2}} \Psi(x, t) \quad \text { (77) } \tag{7}\\
& =\frac{4 m^{2}}{p^{2}}
\end{aligned} \quad \begin{aligned}
& \text { Problem: should be part of } \\
& \text { solution only. Not of } \\
& \text { equation (see Newton) }
\end{align*}
$$

Literature for this part: L. Schiff "quantum-mechanics", item 6, page 20
Turns out can't get it to work with Ψ above, need....

Excursion: Complex numbers and functions

- Earlier, we thought $\sqrt{-1}=$? does not work.
- Now let's just define $\sqrt{-1}=i \quad$ (76) i imaginary unit
-We call numbers containing i complex numbers

$$
\begin{aligned}
& \quad z=a+i b \\
& \text { real part of } z \quad \text { imaginary part of } z
\end{aligned}
$$

(a, b) are usual real numbers

Excursion: Complex numbers and functions

- Some ramifications:

Every polynomial equation now has a solution, e.g.:

$$
a_{2} z^{2}+a_{1} z+a_{0}=0
$$

Example:

$$
z^{2}+2 z+10=0 \Leftrightarrow(z+1)^{2}=-9
$$

Complex solution: $\quad z_{ \pm}=-1 \pm 3 i$

- Visualisation:

Can view z as 2 D vector and draw in 2D plane:

$$
z \leftrightarrow(a, b)
$$

Excursion: Complex numbers and functions

-Functions of complex numbers, e.g. $f(z)=\frac{z+5}{z-2}$

- Most important example for this course

$$
\exp (z)=\sum_{n=0}^{\infty} \frac{z^{n}}{n!}
$$

-Find formula:

$$
\begin{equation*}
\exp (a+i b)=\exp (a)[\cos (b)+i \sin (b)] \tag{78}
\end{equation*}
$$

Excursion: Complex numbers and functions

$$
\exp (i b)=\cos (b)+i \sin (b)
$$

- In the complex plane:
complex plane:

Excursion: Complex numbers and functions

- Can write any complex number as

$$
\begin{equation*}
z=r \exp (i \varphi) \tag{79}
\end{equation*}
$$

- Complex conjugate $z^{*}=a-i b$

Excursion: Complex numbers and functions

- We can now express \sin and \cos using Eq. (77b):

$$
\begin{align*}
& \cos (x)=\frac{1}{2}\left(e^{i x}+e^{-i x}\right) \tag{822}\\
& \sin (x)=\frac{1}{2 i}\left(e^{i x}-e^{-i x}\right) \tag{82b}
\end{align*}
$$

- This makes your life better. Can now forget about trig-identities.
- Can simply use

$$
\begin{equation*}
\exp (a+b)=\exp (a) \exp (b) \tag{83}
\end{equation*}
$$

...for manipulations such as in section (2.3.1.)

Schrödinger's equation

With complex numbers, let us fix new:
Quantum wave function of free particle

$$
\begin{equation*}
\Psi(x, t)=A \exp [i(k x-\omega t)] \tag{8}
\end{equation*}
$$

- Still: $\quad k=\frac{p}{\hbar} \quad \omega=\frac{E}{\hbar}$
-This replaces Eq. (54). Forget Eq. (54)!!!!
-Note, probability density:

$$
\rho(x, t)=|\Psi(x, t)|^{2}=|A|^{2}=\text { const } .
$$

Schrödinger's equation

With complex numbers, let us fix new:
Quantum wave function of free particle

$$
\begin{equation*}
\Psi(x, t)=A \exp [i(k x-\omega t)] \tag{84}
\end{equation*}
$$

Schrödinger's equation

With complex numbers, let us fix new:
Quantum wave function of free particle

$$
\begin{equation*}
\Psi(x, t)=A \exp [i(k x-\omega t)] \tag{84}
\end{equation*}
$$

Now let us re-attempt finding a wave-equation that has (84) as a solution....

Schrödinger's equation $\quad k=\frac{p}{\hbar} \quad \omega=\frac{E}{\hbar}$
From Eq. (84): $\Psi(x, t)=A \exp [i(k x-\omega t)]$
$p \Psi(x, t)=-i \hbar \frac{\partial}{\partial x} \Psi(x, t) \quad p^{2} \Psi(x, t)=-\hbar^{2} \frac{\partial^{2}}{\partial x^{2}} \Psi(x, t)$
Also:

$$
E \Psi(x, t)=i \hbar \frac{\partial}{\partial t} \Psi(x, t)
$$

Suppose particle feels potential energy $\mathrm{U}(\mathrm{x}, \mathrm{t})$:

$$
E=\frac{p^{2}}{2 m}+U(x, t)
$$

try:

$$
i \hbar \frac{\partial}{\partial t} \Psi(x, t)=\left(-\frac{\hbar^{2}}{2 m} \frac{\partial^{2}}{\partial x^{2}}+U(x, t)\right) \Psi(x, t)
$$

Schrödinger's equation

This gives indeed the
Time-dependent Schrödinger equation (TDSE) of particle in 1D in a potential $U(x, t)$

$$
\begin{equation*}
i \hbar \frac{\partial}{\partial t} \Psi(x, t)=\left(-\frac{\hbar^{2}}{2 m} \frac{\partial^{2}}{\partial x^{2}}+U(x, t)\right) \Psi(x, t) \tag{85}
\end{equation*}
$$

-The classical equivalent is

$$
\begin{equation*}
F=m a=m \ddot{x}=-\frac{\partial}{\partial x} U(x, t) \tag{86}
\end{equation*}
$$

-It contains only the problem (particle, potential) and can give any dynamics [unlike Eq. (77)]

Schrödinger's equation

Time-dependent Schrödinger equation (TDSE) of particle in 1D in a potential $U(x, t)$

$$
\begin{equation*}
i \hbar \frac{\partial}{\partial t} \Psi(x, t)=\left(-\frac{\hbar^{2}}{2 m} \frac{\partial^{2}}{\partial x^{2}}+U(x, t)\right) \Psi(x, t) \tag{85}
\end{equation*}
$$

$i \hbar \frac{\partial}{\partial t} \Psi(x, y, z, t)=\left(-\frac{\hbar^{2}}{2 m}\left(\frac{\partial^{2}}{\partial x^{2}}+\frac{\partial^{2}}{\partial y^{2}}+\frac{\partial^{2}}{\partial z^{2}}\right)+U(x, y, z, t)\right) \Psi(x, y, z, t)$

- Note, we haven't really derived Eq. (85). It cannot be derived

Example: The free particle

We had used the wavefunction

$$
\Psi(x, t)=A \exp [i(k x-\omega t)] \quad \text { repeat (84) }
$$

to associate

$$
E \ldots=i \hbar \frac{\partial}{\partial t} \ldots \quad p \ldots=-i \hbar \frac{\partial}{\partial x} \ldots
$$

in motivating the TDSE Eq. (85).
For $U(x, t)=0$ the function (84) is in fact a solution of the TDSE, if

$$
E=\frac{p^{2}}{2 m}
$$

This is the case for a free particle, which is not subject to any potential.
Verification...

Example (contd.)

Free particle wave function

TDSE

$$
\begin{aligned}
& \Psi(x, t)=A \exp [i(k x-\omega t)] \\
& i \hbar \frac{\partial}{\partial t} \Psi(x, t)=-\frac{\hbar^{2}}{2 m} \frac{\partial^{2}}{\partial x^{2}} \Psi(x, t) \\
& i \hbar(-i \omega) \Psi(x, t)=\left(-\frac{\hbar^{2}}{2 m}\right)(i k)^{2} \Psi(x, t) \\
& \hbar \omega \Psi(x, t)=\left(\frac{\hbar^{2} k^{2}}{2 m}\right) \Psi(x, t) \\
& \hbar \omega=h \nu=E=\frac{p^{2}}{2 m} \quad \hbar k=p
\end{aligned}
$$

Example: Numerical solution of TDSE

-TDSE is a first-order differential equation in time

- If we know $\Psi(x, t=0)$ we can find $\Psi(x, t)$ at all later times.
-Let's start with:

$$
\Psi(x, t=0)=\mathscr{N} e^{-\frac{\left(x-x_{0}\right)^{2}}{2 \sigma_{x}^{2}}}
$$

- Note, this is a Gaussian wave packet, c.f. Sec.
(2.3.3) with $\mathrm{k}_{0}=0$.

Example: Numerical solution of TDSE

Example: Numerical solution of TDSE $\mathbf{t}=\mathbf{0} .0$

Example: Numerical solution of TDSE

- We see initially behavior like we would expect classically (particle "falling down" potential gradient)
- But already it always has a distribution of positions
- At late time, lots of wave like interference effects are visible.

Linearity and superposition

- Since now all information about the dynamics/ motion of a particle is encoded in the wave function, mechanics becomes probabilistic
- The TDSE is linear. This means we have again:

Superposition principle

 If $\Psi_{1}(x, t)$ and $\Psi_{2}(x, t)$ are solutions to theTDSE, so is $\Psi_{3}(x, t)=d_{1} \Psi_{1}(x, t)+d_{2} \Psi_{2}(x, t)$

In analytical solutions, we have to take care of....

Schrödinger's equation, admissible solutions

- single-valued

- Normalizable $\int d x|\Psi(x, t)|^{2}=1$

- continuous

$$
\lim _{x \backslash x_{0}} \Psi(x)=\lim _{x \nmid x_{0}} \Psi(x)
$$

- differentiable with continuous derivatives

$$
\lim _{x \backslash x_{0}} \frac{d}{d x} \Psi(x)=\lim _{x \nmid x_{0}} \frac{d}{d x} \Psi(x)
$$

Expectation values

Statistics:

If x is a random variables which can have outcomes x_{k} with probability ρ_{k} we define
Expectation value $E[x]=\sum_{k} x_{k} \rho_{k}$

- Expectation values corresponds to the average over a very large number of realisations.
- Example: Throw a 6-sided dice.

$$
\begin{aligned}
x_{k} & =k, k=1, \ldots, 6 \\
\rho_{k} & =\frac{1}{6}
\end{aligned}
$$

$$
E[x]=\frac{1+2+3+4+5+6}{6}=3.5
$$

Expectation values

- For a continuous range of possible outcomes, Eq. (89) becomes

$$
\begin{equation*}
E[x]=\int d x x \rho(x) \tag{90}
\end{equation*}
$$

- We can now apply this to the quantum wave function to find the

Position expectation value of particle with wavefunction $\Psi(x, t)$

$$
\begin{equation*}
\langle x\rangle=\int_{-\infty}^{\infty} d x x|\Psi(x, t)|^{2} \tag{91}
\end{equation*}
$$

- This is the average over many position measurements of identically prepared particles

Operators

How do we find expectation values of momentum or energy?

- Statistics: $\langle p\rangle=\int d p p \rho(p)$

But wave-function does not give us probability of momentum directly. We must use....
Momentum operator $\quad \hat{p}=-i \hbar \frac{\partial}{\partial x}$

- Motivation: Eq. (84b)
-Notation: We denote all operators with "hat".

Operators An operator \hat{O} is a map of a function

 onto another function: $\hat{O}: f(x) \rightarrow g(x)$Example: $\quad \hat{O}=\frac{\partial}{\partial x}=\frac{i}{\hbar} \hat{p}$

$$
f(x)=\exp \left[-x^{2}\right] \quad g(x)=-2 x \exp \left[-x^{2}\right]
$$

[recall "differentiation by drawing" chapter 1]

Operators

Discretize the functions and put them into a vector:

$$
\vec{f}=\left[\begin{array}{c}
f\left(x_{0}\right) \\
f\left(x_{1}\right) \\
\vdots \\
f\left(x_{k}\right) \\
\vdots \\
f\left(x_{N}\right)
\end{array}\right]
$$

Now: $g(x)=\frac{\partial}{\partial x} f(x)$

Can map operator onto matrix: $\quad \vec{g}=\underline{D} \vec{f}$

$$
\vec{g}=\underline{\underline{D}} \vec{f}
$$

$$
\vec{g}=\left[\begin{array}{c}
g\left(x_{0}\right) \\
g\left(x_{1}\right) \\
\vdots \\
g\left(x_{k}\right) \\
\vdots \\
g\left(x_{N}\right)
\end{array}\right]
$$

Operators
For the specific derivative operator, we can even approximately write an explicit form:
Definition of derivative / slope: $\left.\frac{\partial}{\partial x} f(x)\right|_{x=x_{0}}=\frac{f\left(x_{0}+\Delta x\right)-f\left(x_{0}-\Delta x\right)}{\Delta x}$

Thus:

$$
\stackrel{\rightharpoonup}{f}=\frac{1}{\Delta x}\left[\begin{array}{cccc}
0 & 1 & & \cdots \\
-10 & 1 & & 0 \\
-1 & 1 & & \\
\vdots & & & 1 \\
\vdots & -1 & 0 \\
0 & 0 & -1 & 0
\end{array}\right]\left[\begin{array}{c}
f\left(x_{0}\right) \\
f\left(x_{1}\right) \\
\vdots \\
\\
f\left(x_{N}\right)
\end{array}\right]
$$

Summary, operators

We can then think of operators as matrices

$$
\hat{O} \rightarrow \underline{\underline{O}}
$$

(matrices map vectors onto other vectors,
Operators map functions onto other functions)

$$
\begin{aligned}
& \underline{\underline{O}}: \vec{v} \rightarrow \vec{w}, \vec{w}=\underline{\underline{O}} \vec{v} \\
& \hat{O}: f(x) \rightarrow g(x)
\end{aligned}
$$

Operators

It turns out:...
In quantum mechanics, every observable is represented by an operator

Its expectation value is then:
Expectation value of any operator

$$
\begin{equation*}
\langle\hat{O}\rangle=\int_{-\infty}^{\infty} d x \Psi *(x, t) \hat{O} \Psi(x, t) \tag{93}
\end{equation*}
$$

- e.g. momentum expectation value:

$$
\begin{equation*}
\langle\hat{p}\rangle=\int_{-\infty}^{\infty} d x \Psi^{*}(x, t)\left(-i \hbar \frac{\partial}{\partial x}\right) \Psi(x, t) \tag{94}
\end{equation*}
$$

$\bullet!!$ Ordering in Eq. (93) is important for differential operators

Example: Gaussian wave packet

Convert our earlier Gaussian wave-packet Eq. (42), into one for complex waves, as Eq. (84)

$$
\begin{aligned}
& \Psi(x)=\frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{\infty} d k \tilde{g}(k) \exp (i k x) \\
& \tilde{g}(k)=\frac{1}{\sqrt{\sqrt{\pi} \sigma_{k}}} e^{-\frac{\left(k-k_{0}\right)^{2}}{2 \sigma_{k}^{2}}} \\
& \Psi(x)=\frac{1}{\left(\pi \sigma_{x}^{2}\right)^{1 / 4}} e^{i k_{0} x} e^{-\frac{x^{2}}{2 \sigma_{x}^{2}}}(96) \quad \text { Now: } \int d x|\Psi(x)|^{2}=1
\end{aligned}
$$

Example (contd.)

Let us calculate the expectation value of position $\langle\hat{x}\rangle$ and momentum $\langle\hat{p}\rangle$
Let's slightly shift wave packet: $\Psi(x)=\frac{1}{\left(\pi \sigma_{x}^{2}\right)^{1 / 4}} e^{i k_{0} x} e^{-\frac{(x-\sqrt{(0)})^{2}}{2 \sigma_{i}^{2}}}$

$$
\begin{aligned}
&\langle\hat{x}\rangle=\int_{-\infty}^{\infty} d x \Psi *(x) \hat{x} \Psi(x) \\
&=\int_{-\infty}^{\infty} d x \frac{1}{\sqrt{\pi} \sigma_{x}}\left|e^{i k_{0} x}\right|^{2}\left|e^{-\frac{\left(x-x_{0}\right)^{2}}{2 \sigma_{\tilde{z}}^{2}}}\right|^{2} x \\
&=\frac{1}{\sqrt{\pi} \sigma_{x}} \int_{-\infty}^{\infty} d x e^{-\frac{\left(x-x_{0}\right)^{2}}{\sigma_{\tilde{x}}}} x=\frac{1}{\sqrt{\pi} \sigma_{x}} \int_{-\infty}^{\infty} d \tilde{x} e^{-\frac{\tilde{x}^{2}}{\sigma_{\tilde{x}}}}\left(\tilde{x}+x_{0}\right) \\
& d \tilde{x}=d x
\end{aligned}
$$

Example (contd.)

$$
\Psi(x)=\frac{1}{\left(\pi \sigma_{x}^{2}\right)^{1 / 4}} e^{i k_{0} x} e^{-\frac{\left(x-x_{0}\right)^{2}}{2 \sigma_{x}^{2}}}(97)
$$

Split integral into two:
$\langle\hat{x}\rangle=\cdots=\frac{1}{\sqrt{\pi} \sigma_{x}} \int_{-\infty}^{\infty} d \tilde{x} e^{-\frac{\tilde{x}^{2}}{\sigma_{\tilde{z}}}}\left(\tilde{x}+x_{0}\right)$

$$
\begin{aligned}
& =\frac{1}{\sqrt{\pi} \sigma_{x}} \int_{-\infty}^{\infty} d \tilde{x} e^{-\frac{\tilde{z}^{2}}{\sigma_{\tilde{2}}^{2}}} \tilde{x}+x_{0} \frac{1}{\sqrt{\pi} \sigma_{x}} \int_{-\infty}^{\infty} d \tilde{x} e^{-\frac{\tilde{x}^{2}}{\sigma_{\tilde{x}}^{2}}}=x_{0} \\
& =0 \\
& \text { asymmetric integrand! }
\end{aligned}
$$

Thus on average, this particle is found at position x_{0}

Example (contd.)

For momentum expectation value:
$\langle\hat{p}\rangle=\int_{-\infty}^{\infty} d x \Psi *(x, t)\left(-i \hbar \frac{\partial}{\partial x}\right) \Psi(x, t) \quad \Psi(x)=\frac{1}{\left(\pi \sigma_{x}^{2}\right)^{1 / 4}} e^{i k_{0} x} e^{-\frac{\left(x-x_{0}\right)^{2}}{2 \sigma \sigma_{z}^{2}}}$
$=\frac{1}{\sqrt{\pi} \sigma_{x}} \int_{-\infty}^{\infty} d x e^{-i k_{0} x} e^{-\frac{\left(\alpha-x_{0}\right)^{2}}{2 \sigma_{k}^{2}}}\left(-i \hbar \frac{\partial}{\partial x}\right) e^{i k_{0} x} e^{-\frac{\left(x-x_{0}\right)^{2}}{2 \sigma_{i}^{2}}}$
$=\frac{1}{\sqrt{\pi} \sigma_{x}} \int_{-\infty}^{\infty} d x e^{-i k_{0} x} e^{-\frac{\left(x-x_{0}\right)^{2}}{2 \sigma_{k}^{2}}}\left(\hbar k_{0} e^{-i k_{0} x} e^{-\frac{(x-x)^{2}}{200_{k}}}+e^{-i k_{0} x}\left(-\frac{\left(x-x_{0}\right)}{2 \sigma_{x}^{2}}\right) e^{-\frac{\left(x-x_{0}\right)^{2}}{20 \sigma_{2}^{2}}}\right)$
excercise
$=\cdots=\hbar k_{0} \equiv p_{0}$
Thus on average, this particle has momentum p_{0}

3.2.2) Time independent Schrödinger equation

Frequently, e.g.) examples in 3.2.1), potential does not actually depend on time $\quad U(x, t)=U(x)$

For example free particle $U(x, t)=0$
Note we can write Eq. (84) as

$$
\begin{align*}
& \Psi(x, t)=A \exp [i(k x-\omega t)] \\
& \Psi(x, t)=\phi(x) \exp [-i \omega t] \tag{98}
\end{align*}
$$

Insert into TDSE:

$$
i \hbar \frac{\partial}{\partial t} \Psi(x, t)=\ldots \quad \hbar \omega \Psi(x, t)=\ldots \quad E \Psi(x, t)=\ldots
$$

Time independent Schrödinger equation

Using this replacement on the lhs, we are led to the

Time-independent Schrödinger equation (TISE) of particle in 1D in a potential $U(x)$

$$
\begin{equation*}
E_{n} \phi_{n}(x)=\left(-\frac{\hbar^{2}}{2 m} \frac{\partial^{2}}{\partial x^{2}}+U(x)\right) \phi_{n}(x) \tag{99}
\end{equation*}
$$

-The equation has many solutions $n=0,1,2, \ldots$ with different energies E_{n}

- If we start the TDSE on such a solution, i.e. $\Psi(x, 0)=\phi_{n}(x)$ we get (see Eq. 107b later)

$$
\begin{equation*}
\Psi_{n}(x, t)=\phi_{n}(x) e^{-i \frac{E_{n}}{n} t} \tag{99b}
\end{equation*}
$$

Thus: $|\Psi(x, t)|^{2}=\left|\phi_{n}(x)\right|^{2}$ probability density const!!

Time independent Schrödinger equation

Time-independent Schrödinger equation (TISE) of particle in 1D in a potential $U(x, t)$

$$
\begin{equation*}
E_{n} \phi_{n}(x)=\left(-\frac{\hbar^{2}}{2 m} \frac{\partial^{2}}{\partial x^{2}}+U(x)\right) \phi_{n}(x) \tag{100}
\end{equation*}
$$

-The operator on the rhs. of the TISE is so important that it has a special name:

Hamiltonian (operator):

$$
\begin{equation*}
\hat{H}=-\frac{\hbar^{2}}{2 m} \frac{\partial^{2}}{\partial x^{2}}+U(x) \tag{101}
\end{equation*}
$$

- It represents the total energy of the particle

3.2.2.1.) Example: Particle in a box

We can best understand the relevance of the TISE by revisiting the example from section 2.4.3) more mathematically:

We first need a box potential:

Finite energy particle can never leave this box...

Example (contd.)

We shall solve: $\quad E_{n} \phi_{n}(x)=\left(-\frac{\hbar^{2}}{2 m} \frac{\partial^{2}}{\partial x^{2}}+U(x)\right) \phi_{n}(x)$
First note: $\quad \phi_{n}(x)=0 \quad$ outside the box.
Reason: (A) Let's use Eq. (93) with $\hat{O}=U(\hat{x})$
Expectation value of potential energy
$\langle U(\hat{x})\rangle=\int_{-\infty}^{\infty} d x U(x)\left|\phi_{n}(x)\right|^{2}$
This would be infinite if $\phi_{n}(x) \neq 0$ outside box.
(B) Wavefunction must be continuous
[proof: advanced courses]
\Rightarrow Boundary condition $\quad \phi_{n}(0)=\phi_{n}(L)=0$
(c.f. section 2.4.3)

Example (contd.)

Inside the box $U=0 \quad E_{n} \phi_{n}(x)=-\frac{\hbar^{2}}{2 m} \frac{\partial^{2}}{\partial x^{2}} \phi_{n}(x)$
Solution? Revisit section 1.2):

$$
\begin{equation*}
\phi_{n}(x)=A \sin \left(\frac{\sqrt{2 m E_{n}}}{\hbar} x\right)+B \cos \left(\frac{\sqrt{2 m E_{n}}}{\hbar} x\right) \tag{103}
\end{equation*}
$$

[verify by insertion into (98)]
To fulfill B.C.

$$
\begin{array}{ll}
\phi_{n}(0)=0 & B=0 \\
\phi_{n}(L)=0 & \frac{\sqrt{2 m E_{n}}}{\hbar} L=n \pi
\end{array}
$$

$$
n=1,2, \ldots
$$

We thus again arrive at $\quad E_{n}=\frac{n^{2} \hbar^{2} \pi^{2}}{2 m L^{2}} \quad[=$ Eq. (65)]

Example (contd.)

We have also found the wave-function:

$$
\begin{equation*}
\phi_{n}(x)=A \sin \left(k_{n} x\right) \quad k_{n}=\frac{n \pi}{L} \tag{104}
\end{equation*}
$$

Finally can find A by requiring normalisation [Eq.(59)]

$$
1=\int_{-\infty}^{\infty}\left|\phi_{n}(x)\right|^{2} d x \quad \Rightarrow \quad \begin{gathered}
A=\sqrt{\frac{2}{L}} \\
\text { Iexercis }
\end{gathered}
$$ [exercise!]

We now solved our first quantum problem:
Solution of TISE for particle in the box

$$
\begin{equation*}
E_{n}=\frac{n^{2} \hbar^{2} \pi^{2}}{2 m L^{2}} \quad \phi_{n}(x)=\sqrt{\frac{2}{L}} \sin \left(k_{n} x\right) \quad k_{n}=\frac{n \pi}{L} \tag{105}
\end{equation*}
$$

Solution of TISE for particle in the box

$$
\begin{equation*}
E_{n}=\frac{n^{2} \hbar^{2} \pi^{2}}{2 m L^{2}} \quad \phi_{n}(x)=\sqrt{\frac{2}{L}} \sin \left(k_{n} x\right) \quad k_{n}=\frac{n \pi}{L} \tag{105}
\end{equation*}
$$

Legend: Diagrams as on he previous slide will occur frequently throughout this section

Potential energy $U(x)$ (grey shade/line)

Energy values (green lines, same axes as U)

Wave-function (red line), not to scale [has different units!]. The zero for each of these is the green line

Legend: ... thus if we were carefully drawing this information into separate diagrams we get:

Example (contd.)

Again we can calculate expectation values...
We find: $\langle\hat{x}\rangle=\frac{L}{2} \quad\langle\hat{p}\rangle=0$
Q: $\mathrm{E}_{\text {kin }}$ nonzero. How does $\langle\hat{p}\rangle=0$
 make sense?

A: For position, we see probability density in any state is symmetric writ. L/2. So mean position L/2. For momentum, use Eq. (82b)

$$
\sin (k x)=\frac{1}{2 i}\left(e^{i k x}-e^{-i k x}\right)
$$

contains $p>0$ and $p<0!!!$ (Eq. 55)

3.2.3) Operators and eigenvalues

Let us rewrite the TISE we just solved using \hat{H} (Eq. 101):

$$
\begin{equation*}
\hat{H} \phi_{n}(x)=E_{n} \phi_{n}(x) \tag{106}
\end{equation*}
$$

Q: what does that remind you of?
A: Matrix eigenvalue problem:

$$
\begin{equation*}
A \vec{v}=\lambda \vec{v} \tag{103}
\end{equation*}
$$

- Here A is an (NxN) matrix, \vec{v} an N component vector. λ a real number.

Operators and eigenvalues

We define in general
Operator eigenvalue problem

$$
\begin{equation*}
\hat{O} \varphi_{n}(x)=o_{n} \varphi_{n}(x) \tag{107}
\end{equation*}
$$

- \hat{O} is an operator
- $\varphi_{n}(x)$ is called eigen-function ("own-function")
- o_{n} is called eigen-value ("own-value")

Example:
$\hat{O}=\hat{p}=-i \hbar \frac{\partial}{\partial x}$

$$
\varphi_{n}(x)=\exp \left(i k_{n} x\right) \quad o_{n}=p_{n}=\hbar k_{n}
$$

Free particle wavefct. $\varphi(x)$ is an eigen-function of \hat{p}

Operators and eigenvalues

In this language we understand the
TISE as eigenvalue problem

$$
\begin{equation*}
\hat{H} \phi_{n}(x)=E_{n} \phi_{n}(x) \tag{106,rep}
\end{equation*}
$$

of the Hamiltonian

- the solutions $\varphi_{n}(x)$ are called eigen-states of the problem
- E_{n} are the allowed eigen-energies of the problem
(c.f. e.g. atom energies Eq. (75))

3.2.4.) Time-dependence from TISE

While the TISE is time-independent, it still allows us to find the time-evolution:

Suppose the initial state for particle in the box is

$$
\Psi(x, t=0)=\phi_{n}(x)
$$

with $\phi_{n}(x)$ from Eq. (105). Assume $\Psi(x, t)=c(t) \phi_{n}(x)$
Then we have
Eq. (99) TISE

$$
\begin{gathered}
i \hbar\left[\frac{\partial}{\partial t} c(t)\right] \phi_{n}(x)=i \hbar \frac{\partial}{\partial t} \Psi(x, t)=\hat{H} \Psi(x, t)=c(t) \hat{H} \phi_{n}(x) \stackrel{\downarrow}{=} c(t) E_{n} \phi_{n}(x) \\
\text { Eq. (85) TDSE, using Hamiltonian }
\end{gathered}
$$

Time-dependence from TISE

Overall

$$
i \hbar \frac{\partial}{\partial t} c(t)=E_{n} c(t)
$$

Which has the solution $c(t)=e^{-i \frac{E_{n}}{h} t}$, thus...
Time-dependence of eigen state

$$
\begin{equation*}
\Psi(x, t)=\phi_{n}(x) e^{-i \frac{E_{n}}{\hbar} t} \tag{107b}
\end{equation*}
$$

-this justifies comment after Eq. (99)

Time-dependence from TISE

According to (88), we have the superposition principle. What if we now start in a superposition of eigenstates?

$$
\Psi(x, t=0)=\frac{1}{\sqrt{2}}\left[\phi_{a}(x)+\phi_{b}(x)\right]
$$

Time-dependence of superposition

$$
\begin{equation*}
\Psi(x, t)=\frac{1}{\sqrt{2}}\left(\phi_{a}(x) e^{-i \frac{E_{a}}{h} t}+\phi_{b}(x) e^{-i \frac{E_{b}}{\hbar} t}\right) \tag{107c}
\end{equation*}
$$

- proof: PHY 304 QM
- ramifications: Tutorial 10, online app: http://www.falstad.com/qm1d/

