
8Week PHY 106 Quantum Physics 
Instructor: Sebastian Wüster, IISER Bhopal, 2018  

These notes are provided for the students of the class above only. 
There is no warranty for correctness, please contact me if you spot a mistake.  

3.2) Introduction to Quantum Mechanics 
Seen in week 7 that matter-wave concept can 
successfully explain a lot about atoms. 

Quantum:

Ψ( ⃗r, t)Wave-function

However we need now a formal basis.
Classically:

⃗F = m ⃗a

⃗p (t)

Newton Eq.

Trajectory ⃗r(t)

???
Q: what is needed here?

A: a wave-equation (c.f. section 2.1.2.)



3.2.1) Time dependent Schrödinger’s equation

Re-consider wave function Eq. (57): 
Ψ(x, t) = A cos[2π ( x

λdB
− νt)]

Literature for this part: L. Schiff “quantum-mechanics”, item 6, page 20

We know from week 3 this is a solution of Eq. (13):

∂2

∂x2 Ψ(x, t) = 1
λ2ν2

∂2

∂t2 Ψ(x, t)

λ = h
p ν = E

h



3.2.1) Time dependent Schrödinger’s equation

Re-consider wave function Eq. (57): 
Ψ(x, t) = A cos[2π ( x

λdB
− νt)]

We know from week 3 this is a solution of Eq. (13):

Literature for this part: L. Schiff “quantum-mechanics”, item 6, page 20

∂2

∂x2 Ψ(x, t) = p2

E2
∂2

∂t2 Ψ(x, t)

= 4m2

p2

Problem: should be part of 
solution only. Not of 
equation (see Newton)

Turns out can’t get it to work with     above, need….Ψ

(77)



Excursion: Complex numbers and functions

•Earlier, we thought does not work.− 1 = ?

•Now let’s just define

i imaginary unit

− 1 = i (76)

•We call numbers containing i complex numbers

z = a + ib

(a,b) are usual real numbers

real part of z

a
imaginary part of z

b



Excursion: Complex numbers and functions
•Some ramifications:

Every polynomial equation now has a solution, e.g.:
a2z2 + a1z + a0 = 0

Example:
z2 + 2z + 10 = 0 ⇔ (z + 1)2 = − 9

Complex solution: z± = − 1 ± 3i

•Visualisation:
Can view z as 2D vector 
and draw in 2D plane:

z ↔ (a, b)

complex plane:

1 2 3
0-1-2-3

i
2i

3i

-i
-2i
-3i



Excursion: Complex numbers and functions
•Functions of complex numbers, e.g. f(z) = z + 5

z − 2

•Most important example for this course

exp(z) =
∞

∑
n= 0

zn

n!

•Find formula:

exp(a + ib) = exp(a)[cos(b) + i sin(b)] (78)



Excursion: Complex numbers and functions

(78b)exp(ib) = cos(b) + i sin(b)
•In the complex plane:

complex plane:

1 20-1
-2

i

-i

-2i

exp(b = 0) = 1
exp(b = π/2) = i

exp(b = π) = − 1

exp(b = 3π/4) = − i

exp(b = π/4) = 1
2

(1 + i)
exp(b = 2π) = 1



Excursion: Complex numbers and functions
•Can write any complex number as

(79)z = r exp(iφ)

complex plane:

1 20-1
-2

i

-i

-2i

r φ
z

•Complex conjugate z* = a − ib (80)

z*

•Modulus |z |2 = zz* |z | = zz* (81)



Excursion: Complex numbers and functions
•We can now express sin and cos using Eq. (77b): 

•This makes your life better. Can 
now forget about trig-identities.

cos(x) = 1
2 (eix + e − ix)

sin(x) = 1
2i (eix − e − ix)

(82a)

(82b)

exp(a + b) = exp(a)exp(b)
•Can simply use

…for manipulations such as in section (2.3.1.)

(83)



Schrödinger’s equation

With complex numbers, let us fix new:
Quantum wave function of free particle

Ψ(x, t) = A exp[i(kx − ωt)] (84)

•This replaces Eq. (54). Forget Eq. (54)!!!

•Still: k = p
ℏ ω = E

ℏ

•Note, probability density:
ρ(x, t) = |Ψ(x, t) |2 = |A |2 = const .



Drawing:
2

Schrödinger’s equation

With complex numbers, let us fix new:
Quantum wave function of free particle

Ψ(x, t) = A exp[i(kx − ωt)] (84)

exp(ib) = cos(b) + i sin(b)



Schrödinger’s equation

With complex numbers, let us fix new:
Quantum wave function of free particle

Ψ(x, t) = A exp[i(kx − ωt)] (84)

Now let us re-attempt finding a wave-equation that 
has (84) as a solution….

2



Schrödinger’s equation
From Eq. (84): Ψ(x, t) = A exp[i(kx − ωt)]

p2Ψ(x, t) = − ℏ2 ∂2

∂x2 Ψ(x, t)

k = p
ℏ ω = E

ℏ

Also: EΨ(x, t) = iℏ ∂
∂t

Ψ(x, t)

Suppose particle feels potential energy U(x,t):

E = p2

2m
+ U(x, t)

try:
iℏ ∂

∂t
Ψ(x, t) = (− ℏ2

2m
∂2

∂x2 + U(x, t)) Ψ(x, t)

(84b)
pΨ(x, t) = − iℏ ∂

∂x
Ψ(x, t)



Schrödinger’s equation
This gives indeed the

Time-dependent Schrödinger equation 
(TDSE)  of particle in 1D in a potential U(x,t)

iℏ ∂
∂t

Ψ(x, t) = (− ℏ2

2m
∂2

∂x2 + U(x, t)) Ψ(x, t) (85)

•The classical equivalent is
F = ma = m··x = − ∂

∂x
U(x, t) (86)

•It contains only the problem (particle, potential) 
and can give any dynamics [unlike Eq. (77)]



Schrödinger’s equation
Time-dependent Schrödinger equation 
(TDSE)  of particle in 1D in a potential U(x,t)

iℏ ∂
∂t

Ψ(x, t) = (− ℏ2

2m
∂2

∂x2 + U(x, t)) Ψ(x, t) (85)

•In 3D

•Note, we haven’t really derived Eq. (85). It cannot 
be derived

(87)
iℏ ∂

∂t
Ψ(x, y, z, t) = − ℏ2

2m ( ∂2

∂x2 + ∂2

∂y2 + ∂2

∂z2 ) + U(x, y, z, t) Ψ(x, y, z, t)



Example: The free particle
We had used the wavefunction

Ψ(x, t) = A exp[i(kx − ωt)]
to associate 

E… = iℏ ∂
∂t

… p… = − iℏ ∂
∂x

…

in motivating the TDSE Eq. (85).

repeat (84)

For U(x,t)=0 the function (84) is in fact a solution of 
the TDSE, if

E = p2

2m
This is the case for a free particle, which is not 
subject to any potential. 
Verification…



Example (contd.)
Free particle wave function

Ψ(x, t) = A exp[i(kx − ωt)] repeat (84)

TDSE
iℏ ∂

∂t
Ψ(x, t) = − ℏ2

2m
∂2

∂x2 Ψ(x, t)

iℏ(− iω)Ψ(x, t) = (− ℏ2

2m )(ik)2Ψ(x, t)

ℏωΨ(x, t) = ( ℏ2k2

2m ) Ψ(x, t)

ℏω = h ν = E = p2

2m ℏk = p matches



Example: Numerical solution of TDSE
•TDSE is a first-order differential equation in time

Ψ(x, t = 0)•If we know                       we can find                 at 
all later times.

Ψ(x, t)

•Let’s start with:

Ψ(x, t = 0) = )e − (x − x0)2

2σ2x

•Note, this is a Gaussian wave packet, c.f. Sec. 
(2.3.3) with k0 = 0.



Example: Numerical solution of TDSE

|Ψ(x, t = 0) |2 = )2e − (x − x0)2

σ2x

U(x0)

U(x, t) = U(x)



Example: Numerical solution of TDSE



Example: Numerical solution of TDSE
•We see initially behavior like we would expect 
classically (particle “falling down” potential 
gradient)

•But already it always has a distribution of 
positions

•At late time, lots of wave like interference 
effects are visible.



Linearity and superposition

•The TDSE is linear. This means we have again:

Superposition principle
If           and              are solutions to the 
TDSE, so is 

Ψ1(x, t) Ψ2(x, t)
Ψ3(x, t) = d1Ψ1(x, t) + d2Ψ2(x, t) (88)

•Since now all information about the dynamics/
motion of a particle is encoded in the wave 
function, mechanics becomes probabilistic

In analytical solutions, we have to take care of….



Schrödinger’s equation, admissible solutions

•Normalizable ∫ dx |Ψ(x, t) |2 = 1

lim
x↓x0

d
dx

Ψ(x) = lim
x↑x0

d
dx

Ψ(x)

•differentiable with continuous derivatives

•single-valued

•continuous
lim
x↓x0

Ψ(x) = lim
x↑x0

Ψ(x)



Expectation values

Statistics:
If x is a random variables which can have 
outcomes xk with probability ρk we define
Expectation value E[x] = ∑

k
xkρk (89)

•Expectation values corresponds to the average over 
a very large number of realisations.

E[x] = 1 + 2 + 3 + 4 + 5 + 6
6 = 3.5

•Example: Throw a 6-sided dice. 
xk = k , k = 1,…,6
ρk = 1

6



Expectation values

(90)

•For a continuous range of possible outcomes, Eq. 
(89) becomes E[x] = ∫ dx x ρ(x)

•We can now apply this to the quantum wave 
function to find the

Position expectation value of particle with 
wavefunction ⟨x⟩ = ∫

∞

− ∞
dx x |Ψ(x, t) |2 (91)

Ψ(x, t)

•This is the average over many position 
measurements of identically prepared particles



Operators
How do we find expectation values of 
momentum or energy?

•Statistics: ⟨p⟩ = ∫ dp p ρ(p)

But wave-function does not give us probability 
of momentum directly. We must use….

Momentum operator ̂p = − iℏ ∂
∂x

(92)

•Motivation: Eq. (84b)

•Notation: We denote all operators with “hat”. ̂



f(x) = exp[− x2]

Operators An operator         is a map of a function 
onto another function:

[recall “differentiation by drawing” chapter 1]

Ô
Ô : f(x) → g (x)

Example: Ô = ∂
∂x

= i
ℏ

̂p

g (x) = − 2x exp[− x2]



Operators
Discretize the functions

Now: g (x) = ∂
∂x

f(x)

⃗g = D ⃗f
Can map operator onto 
matrix:

⃗f =

f(x0)
f(x1)

f(xk)

f(xN)

...
... ⃗g =

g (x0)
g (x1)

g (xk)

g (xN)

...
...

and put them into a vector:



Operators
For the specific derivative operator, we can 
even approximately write an explicit form:

∂
∂x

f(x) |x= x0
= f(x0 + Δx) − f(x0 − Δx)

ΔxDefinition of derivative / slope:

Thus:



Summary, operators

We can then think of operators as matrices

(matrices map vectors onto other vectors, 
Operators map functions onto other functions)

Ô → O

O : ⃗v → ⃗w , ⃗w = O ⃗v

Ô : f(x) → g (x)



It turns out:…

Operators

In quantum mechanics, every observable is 
represented by an operator

Expectation value of any operator
⟨Ô⟩ = ∫

∞

− ∞
dx Ψ*(x, t)ÔΨ(x, t) (93)

Its expectation value is then:

measurable quantity

•e.g. momentum expectation value:
⟨ ̂p⟩ = ∫

∞

− ∞
dx Ψ*(x, t)(− iℏ ∂

∂x ) Ψ(x, t) (94)



Example: Gaussian wave packet

•!! Ordering in Eq. (93) is important for differential 
operators

Convert our earlier Gaussian wave-packet Eq. (42), 
into one for complex waves, as Eq. (84)

Ψ(x) = 1
2π ∫

∞

− ∞
dk g̃ (k) exp(ikx)

g̃ (k) = 1

πσk

e
− (k − k0)2

2σ2
k

(95)

Ψ(x) = 1
(πσ2x )1/4 eik0xe − x2

2σ2x (96) Now: ∫ dx |Ψ(x) |2 = 1



Example (contd.)
Let us calculate the expectation value of 
position          and momentum     ⟨ ̂p⟩⟨ ̂x⟩

⟨ ̂x⟩ = ∫
∞

− ∞
dx Ψ*(x) ̂x Ψ(x)

= ∫
∞

− ∞
dx

1
πσx

|eik0x |2 |e − (x − x0)2

2σ2x |2 x

= 1
πσx

∫
∞

− ∞
dx e − (x − x0)2

σ2x x

Let’s slightly shift wave packet: Ψ(x) = 1
(πσ2x )1/4 eik0xe − (x − x0)2

2σ2x
(97)

x0

x̃ = x − x0

d x̃ = d x

= 1
πσx

∫
∞

− ∞
d x̃e − x̃2

σ2x (x̃ + x0)



Example (contd.)
Ψ(x) = 1

(πσ2x )1/4 eik0xe − (x − x0)2

2σ2x (97)
x0

= 1
πσx

∫
∞

− ∞
d x̃e − x̃2

σ2x x̃ + x0
1
πσx

∫
∞

− ∞
d x̃e − x̃2

σ2x

= 0
asymmetric integrand!

= 1
normalisation

= x0

= 1
πσx

∫
∞

− ∞
d x̃e − x̃2

σ2x (x̃ + x0)

Split integral into two:

⟨ ̂x⟩ = ⋯

Thus on average, this particle is found at position x0

= ∫
∞

− ∞
|Ψ |2 dx



Example (contd.)

x0
For momentum expectation value:

⟨ ̂p⟩ = ∫
∞

− ∞
dx Ψ*(x, t)(− iℏ ∂

∂x ) Ψ(x, t) Ψ(x) = 1
(πσ2x )1/4 eik0xe − (x − x0)2

2σ2x

= 1
πσx

∫
∞

− ∞
dx e − ik0xe − (x − x0)2

2σ2x ℏk0e − ik0xe − (x − x0)2

2σ2x + e − ik0x (− (x − x0)
2σ2x ) e − (x − x0)2

2σ2x

= 1
πσx

∫
∞

− ∞
dx e − ik0xe − (x − x0)2

2σ2x (− iℏ ∂
∂x ) eik0xe − (x − x0)2

2σ2x

= ⋯ = ℏk0 ≡p0
excercise

Thus on average, this particle has momentum p0



3.2.2) Time independent Schrödinger equation
Frequently, e.g.) examples in 3.2.1), potential 
does not actually depend on time U(x, t) = U(x)

For example free particle U(x, t) = 0

(98)

Note we can write Eq. (84) as
Ψ(x, t) = A exp[i(kx − ωt)]

Ψ(x, t) = ϕ(x)exp[− iωt]
Insert into TDSE:

iℏ ∂
∂t

Ψ(x, t) = … ℏωΨ(x, t) = … EΨ(x, t) = …



  Time independent Schrödinger equation
Using this replacement on the lhs, we are led to the

(95)

Time-independent Schrödinger equation 
(TISE)  of particle in 1D in a potential U(x)

Enϕn(x) = (− ℏ2

2m
∂2

∂x2 + U(x)) ϕn(x) (99)

•The equation has many solutions n=0,1,2,…with 
different energies En

Ψn(x, t) = ϕn(x)e − i En
ℏ t

•If we start the TDSE on such a solution, i.e.             
we get (see Eq. 107b later) 

(99b)

Ψ(x,0) = ϕn(x)

Thus:                         probability density const!!|Ψ(x, t) |2 = |ϕn(x) |2



  Time independent Schrödinger equation

(95)

Time-independent Schrödinger equation 
(TISE)  of particle in 1D in a potential U(x,t)

Enϕn(x) = (− ℏ2

2m
∂2

∂x2 + U(x)) ϕn(x) (100)

•The operator on the rhs. of the TISE is so important 
that it has a special name:

(95)

Hamiltonian  (operator):
Ĥ = − ℏ2

2m
∂2

∂x2 + U(x) (101)

•It represents the total energy of the particle



3.2.2.1.) Example: Particle in a box
We can best understand the relevance of the TISE by 
revisiting the example from section 2.4.3) more 
mathematically:

L

We first need a box potential:
U(x) =

0, 0 ≤x ≤L
∞,  otherwise

Finite energy particle can never leave this box…



Example (contd.)
We shall solve: Enϕn(x) = (− ℏ2

2m
∂2

∂x2 + U(x)) ϕn(x)

First note:  ϕn(x) = 0 outside the box.

⟨U( ̂x)⟩ = ∫
∞

− ∞
dx U(x) |ϕn(x) |2

Reason: (A) Let’s use Eq. (93) with Ô = U( ̂x)
Expectation value of potential energy

This would be infinite if ϕn(x) ≠0 outside box.
(B) Wavefunction must be continuous

[proof: advanced courses]

ϕn(0) = ϕn(L) = 0⇒ Boundary condition
(c.f. section 2.4.3)



Example (contd.)
Inside the box U=0 Enϕn(x) = − ℏ2

2m
∂2

∂x2 ϕn(x) (102)

[verify by insertion into (98)]

Solution? Revisit section 1.2):

ϕn(x) = A sin (
2mEn

ℏ x) + B cos (
2mEn

ℏ x) (103)

To fulfill B.C. ϕn(0) = 0 B = 0

ϕn(L) = 0 2mEn

ℏ L = nπ
n= 1,2,…

We thus again arrive at En = n2ℏ2π2

2mL2 [= Eq. (65)]



Example (contd.)
We have also found the wave-function:

ϕn(x) = A sin(knx) kn = nπ
L

(104)

Finally can find A  by requiring normalisation 
[Eq.(59)]

1 = ∫
∞

−∞
|ϕn(x) |2 dx

[exercise!]
A = 2

L⇒
We now solved our first quantum problem:

(95)

Solution of TISE for particle in the box

(105)ϕn(x) = 2
L

sin(knx) kn = nπ
L

En = n2ℏ2π2

2mL2



(95)

Solution of TISE for particle in the box

(105)ϕn(x) = 2
L

sin(knx) kn = nπ
L

En = n2ℏ2π2

2mL2

energy levels

n=1
n=2

n=3

n=4

quantum 
states

See plot legend 
on next slide!



Legend: Diagrams as on he previous slide 
will occur frequently throughout this section

n=1
n=2

n=3

n=4
Potential energy U(x) 
(grey shade/line)

Energy values (green 
lines, same axes as U)

Wave-function (red 
line), not to scale [has 
different units!]. The 
zero for each of these 
is the green line



Legend: … thus if we were carefully 
drawing this information into separate 
diagrams we get:



Example (contd.)
Again we can calculate expectation 
values…
We find: ⟨ ̂x⟩ = L

2 ⟨ ̂p⟩ = 0

Q: Ekin nonzero. How does        
make sense?

A: For position, we see probability density in any 
state is symmetric wrt. L/2. So mean position L/2. 
For momentum, use Eq. (82b)

sin(kx) = 1
2i (eikx − e − ikx)

contains p>0 and p<0!!! (Eq. 55)

⟨ ̂p⟩ = 0



3.2.3) Operators and eigenvalues
Let us rewrite the TISE we just solved using    (Eq. 101):

Ĥϕn(x) = Enϕn(x) (106)

Q: what does that remind you of?

A: Matrix eigenvalue problem:
(103)A ⃗v = λ ⃗v

Ĥ

•Here A is an (NxN) matrix,     an N component 
vector.      a real number.

⃗v
λ



Operators and eigenvalues
We define in general

Operator eigenvalue problem
Ôφn(x) = onφn(x) (107)

•        is an operatorÔ

•        is called eigen-function (“own-function”)φn(x)

•        is called eigen-value (“own-value”)on

Example:
Ô = ̂p = − iℏ ∂

∂x
φn(x) = exp(iknx) on = pn = ℏkn

Free particle wavefct.        is an eigen-function of    ̂pφ(x)



Operators and eigenvalues
In this language we understand the

TISE as eigenvalue problem
(106, rep)

•the solutions           are called eigen-states of 
the problem 

φn(x)

•        are the allowed eigen-energies of the problemEn

Ĥϕn(x) = Enϕn(x)

of the Hamiltonian

(c.f. e.g. atom energies Eq. (75) )



3.2.4.) Time-dependence from TISE
While the TISE is time-independent, it still allows us 
to find the time-evolution:

Suppose the initial state for particle in the box is

Ψ(x, t = 0) = ϕn(x)

Then we have

iℏ ∂
∂t

Ψ(x, t) = ĤΨ(x, t) = c(t)Ĥϕn(x)

with          from Eq. (105). Assume ϕn(x) Ψ(x, t) = c(t)ϕn(x)

= c(t)Enϕn(x)iℏ [ ∂
∂t

c(t)] ϕn(x) =

Eq. (85) TDSE, using Hamiltonian

Eq. (99) TISE



Time-dependence from TISE

Overall
iℏ ∂

∂t
c(t) = En c(t)

Which has the solution c(t) = e − i En
ℏ t , thus…

Time-dependence of eigen state
(107b)Ψ(x, t) = ϕn(x)e − i En

ℏ t

•this justifies comment after Eq. (99)



Time-dependence from TISE
According to (88), we have the superposition principle.  

Time-dependence of superposition
(107c)Ψ(x, t) = 1

2 (ϕa(x)e − i Ea
ℏ t + ϕb(x)e − i Eb

ℏ t)

What if we now start in a superposition of eigenstates?

Ψ(x, t = 0) = 1
2

[ϕa(x) + ϕb(x)]

•proof: PHY 304 QM
•ramifications: Tutorial 10, online app:

http://www.falstad.com/qm1d/


