

PHY 106 Quantum Physics Instructor: Sebastian Wüster, IISER Bhopal, 2018

These notes are provided for the students of the class above only. There is no warranty for correctness, please contact me if you spot a mistake.

2.4) Wave properties of particles

Week4: (elm) waves are also particles!

(1924) de Broglie: What if particle are also waves?

Motivation: Symmetry/ Aesthetics, not experiment!

Wave properties of particles

First questions:

What would be their wavelength?

What is the "medium"? What is "waving"?

Let's answer the first one in 2.4.1.)

2.4.1) Matter waves

Let's try the same as for photons:

de-Broglie (matter) wave length
$$\lambda_{dB} = \frac{h}{p} \left(= \frac{h}{\gamma m v} \right)$$
(55)

- •Here p is the momentum of the particle
- •Can use non-relativistic *p=mv* if *v<<c*

•Also
$$p = \hbar k$$

Let's also connect frequency and energy like for photons:

•E is the total energy of the particle

•For example
$$E = \frac{p^2}{2m}$$
 $(E = \gamma mc^2)$

Now we can already write a

Quantum wave function e.g.

$$\Psi(x) = A \cos[2\pi \left(\frac{x}{\lambda_{dB}} - \nu t\right)]$$
(57)

•But what interpretation do we give the **amplitude** of this wave? What is **A**?

Quantum wave function

$$\Psi(x) = A\cos[2\pi\left(\frac{x}{\lambda_{dB}} - \nu t\right)]$$

(57)

(58)

Turns out an interpretation describing the world is:

Probability for position

We find particle between x and x+dx with probability $\rho(x) = |\Psi(x)|^2 dx$

https://www.youtube.com/watch?v=hv12oB_uyFs

Quantum wave function e.g.

$$\Psi(x) = A \cos[2\pi \left(\frac{x}{\lambda_{dB}} - \nu t\right)] \qquad \text{repeat (57)}$$

- $|\Psi(x)|^2$ is called **probability density** • $Pr = \int_a^b |\Psi(x)|^2 dx$ is the probability for the particle to be between locations *a* and *b*
- Thus A has units $m^{-d/2}$ in d dimensions.

Normalisation of wave function

$$1 = \int_{-\infty}^{\infty} |\Psi(x)|^2 dx$$
 (59)

- •Particle has to be **somewhere** with *Pr=1*.
- $\tilde{f}(x)$ now satisfies Eq. (59), even if *f* didn't
- •We can **normalise** most functions f(x) by

$$\tilde{f}(x) = \frac{f(x)}{\sqrt{\int_{-\infty}^{\infty} |f(x)|^2 dx}}$$

• Note: cos in Eq. (57) cannot be normalized if $-\infty < x < \infty$. Consider it within some box -L < x < L only. **Examples:** Probability distribution for the position of object can also arise classically

(1) Probability distribution for a random molecule in the atmosphere (~air density).

DRAW p(h)FARTH (we can't or don't need to know the position of each molecule)

http://galileoandeinstein.physics.virginia.edu/more_stuff/Applets/Brownian/ brownian.html

(2) In Brownian motion, particle in solution gets kicked around by solvent molecules...

• Experiments show that an interpretation like a classical prob. dist. does not work (for experimental demo, see electron-double slit example below)

Examples: De-Broglie wavelengths **electron** $m_{\rho} = 9.10938356 \times 10^{-31}$ kg let $v \approx 0.1c$ $\lambda_{dB} = \frac{h}{mv} \approx 1.5 \text{\AA}$ From Eq. (55): **Unit:** 1 Ånström = 1 Å = $1 \times 10^{-10} m$ "Size of atoms": ~1-5 Å, matter wave nature of

"Size of atoms": ~1-5 A, matter wave nature of electron may be important.

Examples: De-Broglie wavelengths $m_{student} = 80 \text{ kg}$ you: let $v \approx 1 \mu m/s$ $\lambda_{dB} = \frac{h}{m} \approx 5.2 \times 10^{-29} m$ From Eq. (55):

"Size of you": ~1 m, matter wave nature of yourself **probably often un-important**.

What with *p=0*?

2.4.2) Evidence for Matter waves

Recall, beginning week 4: Waves show **interference** and **diffraction**, particles do not.

After de Broglies proposal: Interference experiments with particles to test the idea

Problem: λ_{dB} very small, need short *d* for slits (2.1.4., week 3)

same solution as section 2.2.4), use solid metal crystal as **grating (slits)**

Davisson - Germer experiment (1927)

Results: Number scattered electrons for different angles θ and acceleration voltages V.

Analysis: Use **Bragg** scattering (section 2.2.4), works for any waves, also matter waves.

Eq. (32) $2d\sin(\theta) = n\lambda \longrightarrow \lambda = 0.165$ nm Davisson-Germer: Use $\theta = 65^{\circ}$ n = 1d = 0.091 nm

Electron 54 $eV = E_{kin} = \frac{1}{2}mv^2 \rightarrow mv = p$ De-Broglie λ Eq. (55): $\lambda_{dB} = \frac{h}{mv} = 0.166$ nm Conclusion: Electrons are matter waves!!!

•Movie shown earlier was the build-up of this electron interference pattern, one electron at a time

https://www.youtube.com/watch?v=hv12oB_uyFs

This shows that each electron interferes with itself

 If we in any way obtain information about which slit the electron went through, interference disappears.

- If we in any way obtain information about which slit the electron went through, interference disappears.
- •This implies, interference only happens if the electron went through both slits at once!!! When we detect it, it no longer does

By now, double slit interferencea also for neutrons, atoms, **molecules**:

https://www.sciencealert.com/physicists-run-a-classic-quantumexperiment-showing-how-molecules-act-as-waves

Example: Electron microscope

Transmission Electron Microscope

Q: Electron microscope has a much better resolution than optical one. Why?

Example: Electron microscope

Q: How do we make lenses for electron microscopes?

2.4.3) Particle in a box

So far: quantum theory (i) light **quanta** (ii) Particles are also waves.

The latter leads often to (iii) **quantisation** of physical variables that were earlier continuous.

Consider particle in a box:

Q: What does this remind you of?

Particle in a box

A: Standing waves in cavity (2.1.3)

Turns out matter wave Ψ also must obey **boundary conditions** $\Psi(0) = \Psi(L) = 0$

Particle in a box

Inserting Eq. (61) into (62) we reach

Energy quantisation for a particle in a box $E_n = \frac{n^2 h^2}{8mL^2}$ n = 1, 2, 3... (63)

- Particle in box cannot have any arbitrary energy
- •Allowed states *n* are called **energy levels**
- •The more confined (L small) the larger the energy differences between two levels
- •Zero energy is **not allowed**

Examples: Particle in a box (1) Electron $m = m_{e}$ in atom-size box L = 0.1 nm Eq. (63): $E_n = 38n^2 \text{ eV}$ Q: Photon of 38 eV energy has $\lambda = 205$ nm Spectral range? (2) Proton $m = m_p$ in nucleus-size box L = 4 fm Eq. (63): $E_n = 0.5n^2$ GeV Q: Photon of 0.5 GeV energy.... Spectral range?

Examples: Particle in a box

(3) Marble m = 10g in box L = 10 cm

Eq. (63):
$$E_n = 5.5 \times 10^{-64} \text{J} n^2$$

Velocity matching the *n=1* kinetic energy is

$$v = 3.3 \times 10^{-31}$$
 m/s

We would never notice this. Quantisation irrelevant in (3), in contrast to examples (1) and (2) where it would be very important.

2.4.4) Free particles

If not in box, still want to say where a particle is

$$\Psi(x) = A \cos[2\pi \left(\frac{x}{\lambda_{dB}} - \nu t\right)]$$

Can't from Eq. (57), since

cos is "everywhere"

Can turn this into precise position by $\sigma_x \to 0$...or can we?

2.4.5) Uncertainty principle

Recall Eq. (52): x and k widths are inverse

$$\sigma_x = 1/\sigma_k$$

•But the more wave numbers k (or wavelengths λ) are part of the wave-packet, the more different **momenta** does it have!! $p = \hbar k$

Uncertainty principle

This leads is to the

Heisenberg uncertainty principle

It is impossible to know **both** the exact position **and** exact momentum of a particle/object at the same time. (64)

Uncertainty principle

This leads is to the

Heisenberg uncertainty principle

It is impossible to know **both** the exact position **and** exact momentum of a particle/object at the same time. (64)

- •This is a fundamental consequence of the wave-particle duality.
- It is not due to measurement imperfections.
- •See book for arguments based on measurement **perturbing** the particle

Uncertainty principle Let's phrase the uncertainty principle in terms of math

For the Gaussian wavepacket we define:

Position uncertainty

Momentum uncertainty

Uncertainty principle Based on our discussion of wave-packets, then

Heisenberg uncertainty principle for the Gaussian wavepacket (quantitative version) $\Delta_x \Delta_p = \frac{\hbar}{2}$ (65)

•Follows from $\sigma_x = 1/\sigma_k$

Uncertainty principle

One can show in general, that:

Heisenberg uncertainty principle for any other wavepacket (quantitative version) $\Delta_x \Delta_p > \frac{\hbar}{2}$ (65b)

Example: Uncertainty relation

Suppose we measured proton position x_0 up to $\Delta_x = 1 \times 10^{-11}$ m

What do we know about position t=1 s later?

From Eq. (65)
$$\Delta_p = \frac{\hbar}{2\Delta_x}$$

Hence don't know v better than

$$\Delta v = \frac{\Delta_p}{m_p} = \frac{\hbar}{2m_p\Delta_x}$$

Might travel
$$d = \Delta_v t = \frac{\hbar t}{2m_p\Delta_x}$$

The better we know x initially, the less well at the end

In 1 second:

 $d = 3.15 \times 10^3$ m

Χ

Uncertainty principle

In week 5, we looked at wave packets in **space** and **wavenumber.**

The precise same relations exist between **time** and **frequency**

Let's look briefly at **temporal wave** packets

Temporal wavepacket

Uncertainty principle

Thus for the same reasons as with position and momentum we find a

Energy - time uncertainty relation $\Delta_E \Delta_t > \frac{\hbar}{2}$ (66)

- •Here Δ_E is the energy uncertainty of some state or process
- Δ_t is the **characteristic duration** (e.g. lifetime) associated with it

We looked at E,p,x of matter-waves, but not v.

Let's try for:
$$\Psi(x) = A \cos[2\pi (\frac{x}{\lambda_{dB}} - \nu t)]$$

From Eq. (8), phase velocity:
Insert Eq. (55):
$$\lambda_{dB} = \frac{h}{\gamma m v}$$
 and (56): $\nu = \frac{E}{h}$
 $V = \nu \lambda_{dB} = \frac{E}{\gamma m v} = \frac{\gamma m c^2}{\gamma m v} = \frac{c^2}{v} = \frac{c}{v}c > c$

Faster than light!! Seems irritating.....but...

But for cos matter wave $\Psi(x) = A \cos[2\pi (\frac{x}{\lambda_{dB}} - \nu t)]$ Cannot really define location either!!

For that we needed wave-packet

