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Instructor: Sebastian Wüster, IISER Bhopal, 2018  

These notes are provided for the students of the class above only. 
There is no warranty for correctness, please contact me if you spot a mistake.  

2.4) Wave properties of particles 

Week4: (elm) waves are also particles!

(1924) de Broglie: 
What if particle are also waves?

Motivation: Symmetry/ Aesthetics, not 
experiment!



Wave properties of particles

First questions:

What would be their wavelength?

What is the “medium”? 
What is “waving”?

Let’s answer the 
first one in 2.4.1.)



2.4.1) Matter waves 

Let’s try the same as for photons:

de-Broglie (matter) wave length 
λdB =

h
p ( =

h
γmv ) (55)

•Here p is the momentum of 
the particle

•Can use non-relativistic p=mv if v<<c
p = ℏk•Also



Matter waves

Let’s also connect frequency and energy 
like for photons:
Matter wave frequency 

ν =
E
h

(56)

•E is the total energy of the particle

•For example                                  
(free particle).

E =
p2

2m (E = γmc2)



Now we can already write a

Matter waves

Quantum wave function e.g.
Ψ(x) = A cos[2π (

x
λdB

− νt)] (57)

•But what interpretation do we give the 
amplitude of this wave? What is A?



Matter waves

Quantum wave function
Ψ(x) = A cos[2π (

x
λdB

− νt)] (57)

Turns out an interpretation describing 
the world is:

Probability for position
We find particle between x and x+dx 
with probability ρ(x) = |Ψ(x) |2 dx (58)



Successive measurements of particle position:

https://www.youtube.com/watch?v=hv12oB_uyFs

Matter wave density:|Ψ(x) |2

X
0

high probability low probability



Matter waves

Quantum wave function e.g.
Ψ(x) = A cos[2π (

x
λdB

− νt)]

•              is called probability density|Ψ(x) |2

•                             is the probability for the 
particle to be between locations a and b

Pr = ∫
b

a
|Ψ(x) |2 dx

•  Thus A has units          in d dimensions.m−d/2

repeat (57)



Matter waves
Normalisation of wave function

1 = ∫
∞

−∞
|Ψ(x) |2 dx (59)

•Particle has to be somewhere with Pr=1.

•We can normalise most functions f(x) by 

f̃(x) =
f(x)

∫ ∞
−∞

| f(x) |2 dx

f̃(x)•        now satisfies Eq. (59), even if f didn’t

• Note: cos in Eq. (57) cannot be normalized if                        . 
Consider it within some box                       only.

−∞ < x < ∞
−L < x < L



Examples: Probability distribution for the 
position of object can also arise classically

(1) Probability distribution for a random 
molecule in the atmosphere (~air density).

(we can’t or don’t need to know the position of 
each molecule)

DRAW 
p(h)



(2) In Brownian motion, particle in solution 
gets kicked around by solvent molecules…

fixed position at t=0

 ρ(x) at t>0Pic from: https://scottbembenek.com/ 
einsteins-paper-on-brownian-motion/

http://galileoandeinstein.physics.virginia.edu/more_stuff/Applets/Brownian/
brownian.html



Matter waves|Ψ(x) |2

X
0

high probability low probability

Quantum mechanically the particle 
exists at all positions x with p(x)>0 at 
once.

(60)

Superposition state

•Experiments show that an interpretation 
like a classical prob. dist. does not work

(for experimental demo, see electron-double slit example below)



Examples: De-Broglie wavelengths 
Matter waves

electron
v ≈ 0.1clet

me = 9.10938356 × 10−31 kg

λdB =
h

mv
≈ 1.5ÅFrom Eq. (55):

Unit: 1 Ånström = 1 Å = 1 × 10−10m

“Size of atoms”: ~1-5 Å, matter wave nature of 
electron may be important.



Examples: De-Broglie wavelengths 

Matter waves

you:
v ≈ 1μm/slet

mstudent = 80 kg

λdB =
h

mv
≈ 5.2 × 10−29mFrom Eq. (55):

“Size of you”: ~1 m, matter wave nature of 
yourself probably often un-important.

What with p=0?



2.4.2) Evidence for Matter waves 

After de Broglies proposal: Interference 
experiments with particles to test the idea

Recall, beginning week 4: 
Waves show interference and diffraction, 
particles do not. 

Problem:         very small, need short d for 
slits (2.1.4., week 3)

λdB

same solution as section 2.2.4), use 
solid metal crystal as grating (slits)



 Evidence for Matter waves
Davisson - Germer experiment (1927)
Setup:  



Davisson - Germer experiment (1927)

θ =

θ
Results: Number scattered 
electrons for different angles       
and acceleration voltages V.



 Evidence for Matter waves
Analysis: Use Bragg scattering (section 2.2.4), 
works for any waves, also matter waves.
Eq. (32) 2d sin(θ) = nλ

Davisson-Germer: Use 
d = 0.091 nm
θ = 65o n = 1

λ = 0.165 nm

Electron 54 eV = Ekin =
1
2

mv2 → mv = p

De-Broglie λ Eq. (55): λdB =
h

mv
= 0.166 nm

Conclusion: Electrons are matter waves!!!



 Evidence for Matter waves

screen

Further evidence: electron double slit
(c.f. section 2.1.4)

-
-

-
-

particle 
picture:

probability to 
find particle

z



d

r1

r2

θ

screen

z

probability to 
find particle

 Evidence for Matter waves

wave 
picture:

-

- - (get interference 
fringes just as in 
section 2.1.4)



 Evidence for Matter waves

https://www.youtube.com/watch?v=hv12oB_uyFs

•Movie shown earlier was the build-up of 
this electron interference pattern, one 
electron at a time

•This shows that each 
electron interferes 
with itself



 Evidence for Matter waves
•If we in any way obtain information about 
which slit the electron went through, 
interference disappears.

Detector



 Evidence for Matter waves
•If we in any way obtain information about 
which slit the electron went through, 
interference disappears.

Detector

•This implies, interference only happens if 
the electron went through both slits at 
once!!! When we detect it, it no longer does



 Evidence for Matter waves

https://www.sciencealert.com/physicists-run-a-classic-quantum-
experiment-showing-how-molecules-act-as-waves

By now, double slit interferencea also for 
neutrons, atoms, molecules:

Phthalocyanine



Electron microscopeExample:

Q: Electron microscope has a much better resolution than optical one. Why?



Electron microscopeExample:

Q: How do we make lenses for electron microscopes?



2.4.3) Particle in a box

So far: quantum theory (i) light quanta
(ii) Particles are also waves.

The latter leads often to (iii) quantisation of 
physical variables that were earlier continuous.

Q: What does this 
remind you of?

Consider particle in a 
box:

L



Particle in a box
A: Standing waves in cavity (2.1.3)

L

Turns out matter wave Ψ also must obey 
boundary conditions Ψ(0) = Ψ(L) = 0

X=LX=0

Ψ

0

We can thus use 
Eq. (16)

λdB =
2L
n

To use Eq. (55)

Ekin =
p2

2m
=

h2

2mλ2
dB

n = 1,2,3…

(61)

(62)



Energy quantisation for a particle in a box
(63)n = 1,2,3…En =

n2h2

8mL2

Particle in a box

Inserting Eq. (61) into (62) we reach L

•Particle in box cannot have any arbitrary energy
•Allowed states n are called energy levels

•The more confined (L small) the larger the 
energy differences between two levels

•Zero energy is not allowed



Examples: Particle in a box
L

(1) Electron              in atom-size boxm = me L = 0.1nm

Eq. (63): En = 38n2 eV
Q: Photon of 38 eV energy has λ = 205 nm

Spectral range?

(2) Proton             in nucleus-size boxm = mp L = 4 fm

Eq. (63): En = 0.5n2 GeV
Q: Photon of 0.5 GeV energy….

Spectral range?



Examples: Particle in a box
L

(3) Marble                 in boxm = 10g L = 10 cm 

Eq. (63): En = 5.5 × 10−64J n2

v = 3.3 × 10−31 m/s

Velocity matching the n=1 kinetic energy is

We would never notice this. Quantisation 
irrelevant in (3), in contrast to examples 
(1) and (2) where it would be very 
important.



2.4.4) Free particles

Solution?

If not in box, still want to say where a 
particle is
 Ψ(x) = A cos[2π (

x
λdB

− νt)]

Can’t from Eq. (57), since 
cos is “everywhere”

Wave-packets 
(see week 5)

Ψ(x)



Free particles / Matter wave packets

Wave-packets 
(see week 5) Ψ(x)

Can turn this into precise position by
 

σx → 0

Gaussian wavepacket
(red line)
 

Ψ(x) =
1

2πσx

e− x2

2σ2x

σx

…or can we?



2.4.5) Uncertainty principle

•But the more wave numbers k (or wavelengths 
λ) are part of the wave-packet, the more 
different momenta does it have!!

Recall Eq. (52): x and k widths are inverse 
σx = 1/σk

p = ℏk

σxσk



Uncertainty principle
This leads is to the
Heisenberg uncertainty principle

It is impossible to know both the exact 
position and exact momentum of a 
particle/object at the same time. (64)



Uncertainty principle
This leads is to the
Heisenberg uncertainty principle

It is impossible to know both the exact 
position and exact momentum of a 
particle/object at the same time.

•This is a fundamental consequence of 
the wave-particle duality.

•It is not due to measurement imperfections.

•See book for arguments based on 
measurement perturbing the particle

(64)



Uncertainty principle
Let’s phrase the uncertainty principle in 
terms of math

Position uncertainty

(65b)

For the Gaussian wavepacket we define:

Δx =
1

2
σx

Momentum uncertainty Δp =
ℏ

2
σk



Uncertainty principle
Based on our discussion of wave-packets, 
then

Heisenberg uncertainty principle for the 
Gaussian wavepacket
(quantitative version) (65)ΔxΔp =

ℏ
2

•Follows from                 σx = 1/σk



Uncertainty principle

One can show in general, that:

Heisenberg uncertainty principle for any 
other wavepacket
(quantitative version) (65b)ΔxΔp >

ℏ
2



Example: Uncertainty relation
Suppose we measured proton position     up 
to 
What do we know 
about position  t=1 s later?

x0
Δx = 1 × 10−11 m

x0
XΔx

From Eq. (65) Δp =
ℏ

2Δx

d = Δvt = =
ℏt

2mpΔx

Might travel

Hence don’t know v better than

Δv =
Δp

mp
=

ℏ
2mpΔx

In 1 second:
d = 3.15 × 103 m

The better we 
know x initially, 
the less well at 
the end



In week 5, we looked at wave packets in 
space and wavenumber.

Uncertainty principle

The precise same relations exist 
between time and frequency

Let’s look briefly at temporal wave 
packets



Temporal wavepacket

Earlier spatial wavepacket

f(x) ∼ ∫
∞

−∞
dk e

− (k − k0)2

2σ2
k cos(kx)

f(t) ∼ ∫
∞

−∞
dω e− (ω − ω0)2

2σ2ω cos(ωt)

x → t, k → ω

σx = 1/(2σk)



Temporal wavepacket

Temporal wavepacket σt = 1/(2σω)

f(t) ∼ ∫
∞

−∞
dω e− (ω − ω0)2

2σ2ω cos(ωt)

t

f(t)

g(ω)

g(ω)

ω



Uncertainty principle

Thus for the same reasons as with position 
and momentum we find a

Energy - time uncertainty relation

(66)
ΔEΔt >

ℏ
2

•Here         is the energy uncertainty of 
some state or process

ΔE

Δt•        is the characteristic duration (e.g. 
lifetime) associated with it



2.4.6) Matter wave velocities
We looked at E,p,x of matter-waves, but not v.

Let’s try for: Ψ(x) = A cos[2π (
x

λdB
− νt)]

From Eq. (8), phase velocity:

V = νλdB

λdB =
h

γmv
ν =

E
h

Insert Eq. (55):                   and (56):

=
E

γmv
=

γmc2

γmv
=

c2

v
=

c
v

c > c

Faster than light!! Seems irritating..…but…



2.4.6) Matter wave velocities
But for cos matter wave Ψ(x) = A cos[2π (

x
λdB

− νt)]

Cannot really define location either!!

X
0

For that we needed wave-packet

Which moves at…?

Ψ(x)



2.4.6) Matter wave velocities
Which moves at…?

Ψ(x)

Groupvelocity Eq. (54)

vg =
dω
dk

k=k0

vg =
dω
dk

=
dω/dV
dk/dV

ω = 2πν = 2π
γmc2

h
=

2πmc2

h 1 − V2/c2

k =
2π
λ

=
2πγmV

h
=

2πmV

h 1 − V2/c2



2.4.6) Matter wave velocities
Which moves at…?

Ψ(x)

Groupvelocity Eq. (54)

vg =
dω
dk

k=k0

vg =
dω
dk

=
dω/dV
dk/dV

dω/dV =
2πmV

h(1 − V2/c2)3/2

dk/dV =
2πm

h(1 − V2/c2)3/2

= V Particle velocity = 
group velocity


