2) Waves and Particles

revision of movie:

Quantum physics is essentially all about "things that ought to be particles are also waves" and
"things that ought to be waves are also particles".
Thus, let's make sure we are all on the same page regarding waves.....

2.1) Introduction to wave mechanics

What is a wave?
Definition of wave:
A perturbation of some property is transported through a medium, without transport of the medium itself

Book: A.P. French, "Vibrations and waves"

Waves

Examples:

Rope waves

Seismic wave

Sound wave

Elm wave

Waves

Water wave

First car slows and cars following too closely behind hit their brakes.

First car moves on but the string of cars behind have slowed or stopped.

Front cars move on but the string of cars behind have come to a stop.

Traffic waves

Gravitational wave

2.1.1) Waves, frequencies, wavelengths

wavelength

Waves

$$
\begin{align*}
& y(x, t)=A \sin \left(\frac{2 \pi}{\text { wave velocity }}(x-\nabla t)\right)^{\sqrt{\lambda}} \\
& \text { amplitude } \tag{5}
\end{align*}
$$

wavelength
Form of progressive/travelling wave

$$
y(x, t)=A \sin \left(\frac{2 \pi}{\lambda}(x-V t)\right)
$$

$$
t=0
$$

Argument of sin is called phase
\mathbf{V} here is the phase velocity

$$
\begin{aligned}
& t=\frac{\lambda}{4} \frac{1}{V} \\
& t=\frac{\lambda}{2} \frac{1}{V}
\end{aligned}
$$

Waves

Rewrite wave form:

$$
\begin{equation*}
y(x, t)=A \sin \left(\frac{2 \pi}{\lambda}(x-V t)\right) \quad k=\frac{2 \pi}{\lambda} \tag{7}
\end{equation*}
$$

$$
\begin{equation*}
y(x, t)=A \sin (k x-\omega t) \tag{6}
\end{equation*}
$$

$$
\begin{equation*}
\frac{\omega}{k}=V \tag{8}
\end{equation*}
$$

\mathbf{k} is the wave number
ω is the angular frequency
ν is the frequency
(unit $\mathrm{Hz}=1 / \mathrm{s}$) $\omega=2 \pi \nu$

Waves

$$
\begin{equation*}
y(x, t)=A \sin (k x-\omega t)(6) \quad k=\frac{2 \pi}{\lambda} \tag{7}
\end{equation*}
$$

Relation between frequency, wave length or wave number and phase velocity of any wave

$$
\begin{equation*}
\frac{\omega}{k}=V \quad \text { (8) } \quad \nu \lambda=V \tag{10}
\end{equation*}
$$

\mathbf{k} is the wave number
ω is the angular frequency

$$
\begin{equation*}
\omega=2 \pi \nu \tag{9}
\end{equation*}
$$

ν is the frequency

Wave velocities

$$
\begin{equation*}
\frac{\omega}{k}=V(8) \quad \nu \lambda=V \tag{8}
\end{equation*}
$$

Examples: sound in solid

$$
\begin{aligned}
& V=\sqrt{\frac{Y}{\rho}} \approx 5000 \mathrm{~m} / \mathbf{s} \\
& \nu=440 \mathrm{~Hz} \quad \lambda=11.4 \mathrm{~m}
\end{aligned}
$$

gravitational waves $V=c=299792458 \mathrm{~m} / \mathbf{s}$

$$
\nu=440 \mathrm{~Hz} \quad \lambda=681 \mathrm{~km}
$$

Wave velocities

$$
\begin{equation*}
\frac{\omega}{k}=V(8) \quad \nu \lambda=V \tag{8}
\end{equation*}
$$

Examples II: water wave
$V=500 \mathbf{k m} / \mathbf{h}$
(tsunami)

$$
\nu=3.3 / \mathbf{h} \quad \lambda=151 \mathbf{k m}
$$

light wave (elm) $\quad V=c=299792458 \mathrm{~m} / \mathbf{s}$

$$
\lambda=700 \mathrm{~nm} \quad \nu=4.2 \times 10^{14} \mathrm{~Hz}
$$

2.1.2) The wave equation

Is there a general equation that governs wave

 behavior?$$
y(x, t)=A \sin (k x-\omega t)
$$

We see:

$$
\begin{align*}
& \frac{\partial^{2}}{\partial x^{2}} y(x, t)=-k^{2} A \sin (k x-\omega t)=-k^{2} y(x, t) \tag{11}\\
& \frac{\partial^{2}}{\partial t^{2}} y(x, t)=-(-\omega)^{2} A \sin (k x-\omega t)=-\omega^{2} y(x, t) \tag{12}
\end{align*}
$$

Wave equation

Any function:

$$
y(x, t)=f(x-V t)
$$

Chain rule:

$$
\begin{gathered}
\frac{\partial^{2}}{\partial x^{2}} y(x, t)=(1)^{2} f^{\prime \prime}(x-V t) \\
\frac{\partial^{2}}{\partial t^{2}} y(x, t)=(-V)^{2} f^{\prime \prime}(x-V t)
\end{gathered}
$$

Fulfills wave-equation: (13)

$$
\frac{\partial^{2}}{\partial x^{2}} y(x, t)=\frac{1}{V^{2}} \frac{\partial^{2}}{\partial t^{2}} y(x, t)
$$

The wave equation

$$
\begin{align*}
& \frac{\partial^{2}}{\partial x^{2}} y(x, t)=-k^{2} y(x, t) \quad \frac{\partial^{2}}{\partial t^{2}} y(x, t)=-\omega^{2} y(x, t)_{(112)} \\
& y(x, t)=-\frac{1}{\omega^{2}} \frac{\partial^{2}}{\partial t^{2}} y(x, t) \tag{12}\\
& \text { With: } \quad \frac{\omega}{k}=V_{(8)} \quad \frac{k}{\omega}=\frac{1}{V}
\end{align*}
$$

General wave equation

$$
\begin{equation*}
\frac{\partial^{2}}{\partial x^{2}} y(x, t)=\frac{1}{V^{2}} \frac{\partial^{2}}{\partial t^{2}} y(x, t) \tag{13}
\end{equation*}
$$

- Change in time causes change in space and vice versa.

Wave equation

$y(x, t)=f(x-V t)$ moves to the right with velocity $\mathrm{V}!!$

Wave equation

$y(x, t)=f(x-V t)$ moves to the right with velocity V!!

- $y(x, t)=f(x+v t)$ Moves to the left with velocity V , also fulfills wave equation
- Can be generalized to 2D, 3D
- There are many wave-equations, one for each medium.

Superposition principle

The wave equation is linear. That means any combination of waves is also a solution
let: $\quad \frac{\partial^{2}}{\partial x^{2}} y(x, t)=\frac{1}{V^{2}} \frac{\partial^{2}}{\partial t^{2}} y(x, t)$

$$
\frac{\partial^{2}}{\partial x^{2}} w(x, t)=\frac{1}{V^{2}} \frac{\partial^{2}}{\partial t^{2}} w(x, t)
$$

Then:

$$
\frac{\partial^{2}}{\partial x^{2}}[y(x, t)+w(x, t)]=\frac{1}{V^{2}} \frac{\partial^{2}}{\partial t^{2}}[y(x, t)+w(x, t)]
$$

2.1.3) Standing waves

What happens if we combine two identical waves travelling in opposite directions?

https://phet.colorado.edu/sims/html/wave-on-a-string/latest/wave-on-a-string_en.html

2.1.3) Standing waves

What happens if we combine two identical waves travelling in opposite directions?

Animation from: https://
www.youtube.com/
watch?v=ic73oZogr70

©2007 Yves Pelletier (http:/lweb.ncf.ca/ch865)

Using (6), we can write this as:

$$
y(x, t)=A \sin (k x-\omega t)+A \sin (-k x-\omega t)
$$

Standing waves

$$
y(x, t)=A \sin (k x-\omega t)+A \sin (-k x-\omega t)
$$

Trigonometric identity $\sin (\alpha \pm \beta)=\sin (\alpha) \cos (\beta) \pm \cos (\alpha) \sin (\beta)$

$$
y(x, t)=A[\sin (k x) \cos (\omega t)-\cos (k x) \sin (\omega t)
$$

$$
+\underbrace{\sin (-k x}_{-\sin (k x)}) \cos (\omega t)-\underbrace{\cos (-k x)}_{\cos (k x)} \sin (\omega t)]
$$

$y(x, t)=-2 A \cos (k x) \sin (\omega t)$

Standing waves

Formula for some standing wave $y(x, t)=\tilde{A} \cos (\pi x) \sin (\omega t)$

$t=\frac{\pi}{2 \omega} \quad$ just before $t=\frac{\pi}{\omega}$
$t=\frac{3 \pi}{2 \omega}$

Now ${ }^{(*)}$ let's add:
Boundary condition: $y(0, t)=y(L, t)=0(16 \mathrm{~b})$
Resonance condition for standing wave

$$
\begin{equation*}
L=n \frac{\lambda}{2} \quad \lambda=\frac{2 L}{n} \quad n=1,2,3 \ldots \tag{16}
\end{equation*}
$$

[^0]
Standing waves

Examples:
 Backreflected string wave

Musical instruments

http://whatmusicreallyis.com/research/physics/

Antenna
current
charge

Micro-wave oven

2.1.4) Phenomena characteristic for waves

 InterferenceSuperposition principle: Waves taking different paths get added.

Standing wave: example where superimposed waves always cancel at anti-node:

Interference

Usually (2D, 3D) more options:

Circular waves on a water surface

Interference

Usually (2D, 3D) more options:

Two circular waves: strengthen

Interference

Waves can show interference

-strengthening in certain directions/ at certain times: constructive interference
-weakening in certain directions/ at certain times: destructive interference

Diffraction

Waves can turn around corners:

https://www.youtube.com/watch?v=BHONfVUTWG4

Diffraction

Decompose wave into lots of spherical waves:

\bullet

 $\square+$Could see this from 2D wave equation

Slit larger than wavelength: waves destructively interfere if direction not almost forward (tutorial, waves and optics course)

Diffraction and Interference

Double slit interference

Diffraction and Interference

Double slit interference

Diffraction and Interference

Double slit interference

screen

Diffraction and Interference

Double slit interference

Diffraction and Interference

Double slit interference
Fig. 2

Diffraction and Interference

Double slit interference

Diffraction and Interference

Double slit interference

Diffraction and Interference

double slit interference pattern

$$
\begin{equation*}
I(\theta) \approx I_{0} \cos \left(\pi d \frac{\sin \theta}{\lambda}\right) \tag{17}
\end{equation*}
$$

Diffraction and Interference

$\xrightarrow{\text { Intensity }}$ screen

Diffraction and Interference

$\xrightarrow{\text { Intensity }}$ screen

Diffraction and Interference

$\xrightarrow{\text { Intensity }}$ screen

Diffraction and Interference

$\xrightarrow{\text { Intensity }}$ screen

Diffraction and Interference

double slit interference pattern

$$
\begin{equation*}
I(\theta) \approx I_{0} \cos ^{2}\left(\pi d \frac{\sin \theta}{\lambda}\right) \tag{17}
\end{equation*}
$$

Diffraction and Interference

Examples:

Colors reflected from CD

VLA Radio Astronomy

Water in bay

2.1.5) Electromagnetic waves

You will learn in Electro-magnetism lecture:

Changing magnetic field causes electric field (induction)

Changing electric field causes magnetic field

Electromagnetic waves

Electric field
Magnetic field

Electromagnetic wave equation:
$\left(\frac{\partial^{2}}{\partial x^{2}}+\frac{\partial^{2}}{\partial y^{2}}+\frac{\partial^{2}}{\partial z^{2}}\right) \mathbf{E}(\mathbf{r}, t)=\frac{1}{c^{2}} \frac{\partial^{2}}{\partial t^{2}} \mathbf{E}(\mathbf{r}, t)$
Speed of light (vacuum) $c=\frac{1}{\sqrt{\mu_{0} \epsilon_{0}}}$

$$
c=299792458 \mathrm{~m} / \mathrm{s}
$$

Electromagnetic waves

$$
\begin{equation*}
\nu \lambda=c \tag{10}
\end{equation*}
$$

[^0]: * Q: Eq. (15) is an example that does not fulfill Eq. (16b). Find another example that does.

