4) Many Particle Quantum Physics

So far (weeks 8-10) we ever only dealt with one particle at a time

4.1.) Many particle wave function

Q: Classically, QM: two particles:

$$
\begin{array}{ll}
\vec{r}_{1} & \vec{r}_{2} \\
\vec{p}_{1} & \vec{p}_{2}
\end{array}
$$

$$
\Psi\left(\vec{r}_{1}\right) \rightarrow \Psi\left(\vec{r}_{1}, \vec{r}_{2}\right)
$$

Many particle wave function

Two particles treated classically, Two particles treated quantum, free to move in 1D free to move in 1D

If free to move in 3D: 6D wave-function

Many particle wave function

More details: two particles that can move in one dimension x

$$
\Psi\left(x_{1}, x_{2}\right)=\mathscr{N} \exp \left(-\left(x_{1}-3\right)^{2} / \sigma_{1}^{2}\right) \exp \left(-\left(x_{2}+4\right)^{2} / \sigma_{2}^{2}\right)
$$

Q: What does this example mean?

Total particle density
Many-body probability density

4.1.1) Symmetries of the wave function

Consider now two identical particles (e.g. two electrons, or two gold atoms)

The Heisenberg uncertainty forces us to treat them as strictly indistinguishable

It turns out, this requires ...
The two-particle wave function under exchange of the two particles must be either:
symmetric
$\Psi\left(\vec{r}_{1}, \vec{r}_{2}\right)=+\Psi\left(\vec{r}_{2}, \vec{r}_{1}\right)$
or (142)
anti-symmetric $\Psi\left(\vec{r}_{1}, \vec{r}_{2}\right)=-\Psi\left(\vec{r}_{2}, \vec{r}_{1}\right)$

Symmetries of the wave function

The two-particle wave function under exchange of the two particles must be either:
symmetric
anti-symmetric

$$
\begin{align*}
& \Psi\left(\vec{r}_{1}, \vec{r}_{2}\right)=+\Psi\left(\vec{r}_{2}, \vec{r}_{1}\right) \tag{142}\\
& \Psi\left(\vec{r}_{1}, \vec{r}_{2}\right)=-\Psi\left(\vec{r}_{2}, \vec{r}_{1}\right)
\end{align*}
$$

It further turns out that....

symmetric anti-symmetric $\begin{array}{ll}\leftrightarrow & \text { Bosons } \\ \leftrightarrow & \text { Fermions }\end{array}$

- These allocations follow from relativistic quantum mechanics

4.1.2) Pauli exclusion principle

Suppose we have two (non-interacting) Fermions in the infinite box (see Eq. 105).

Pauli exclusion principle

Suppose we have two (non-interacting) Fermions in the infinite box (see Eq. 105).

Each can be in one of the eigenstates, e.g.:

$$
\begin{equation*}
\Psi\left(x_{1}, x_{2}\right)=\phi_{1}\left(x_{1}\right) \phi_{2}\left(x_{2}\right) \tag{144}
\end{equation*}
$$

But Eq. (144) is not antisymmetric (142), we need:

$$
\left.x_{1}, x_{2}\right)=\frac{1}{\sqrt{2}}\left[\phi_{1}\left(x_{1}\right) \phi_{2}\left(x_{2}\right)-\phi_{1}\left(x_{2}\right) \phi_{2}\left(x_{1}\right)\right]
$$

Pauli exclusion principle

Q: now what happens if both Fermions are in the same state?

Again, this does not work due to wrong symmetry:

$$
\begin{equation*}
\Psi\left(x_{1}, x_{2}\right)=\phi_{1}\left(x_{1}\right) \phi_{1}\left(x_{2}\right) \tag{146}
\end{equation*}
$$

But now we also cannot anti-symmetrize it!!!

$$
\Psi\left(x_{1}, x_{2}\right)=\frac{1}{\sqrt{2}}\left[\phi_{1}\left(x_{1}\right) \phi_{1}\left(x_{2}\right)-\phi_{1}\left(x_{2}\right) \phi_{1}\left(x_{1}\right)\right]=0(147)
$$

This leads to the
Pauli-exclusion principle:
Two identical Fermions, can never occupy the same quantum state.

4.2) Many-Electron Atoms

From Helium upwards, atoms do contain many identical Fermions (electrons) $\mathbf{N}_{\mathbf{e}} \Rightarrow$ Pauli exclusion

Let us for the moment assume all electrons are attracted to the nucleus, but do not repel each other

4.2.1) Atomic shells

This means each electron state can be calculated like for Hydrogen/week 10 (with higher nuclear charge $\mathrm{Q}=\mathrm{Ze}$).

[instead of Eq. (118b)]

- Cannot occupy same quantum state for (148) means here...

No two electrons in an atom can have all equal quantum numbers n, l, m, m_{s}

Atomic shells

This means each electron state can be calculated like for Hydrogen/week 10 (with higher nuclear charge).

Atomic shells

Going to heavier atoms, we increase $\mathbf{N}_{\mathbf{e}}$ but also $\mathrm{Q}=\mathrm{Ze}$, the nuclear charge. \Rightarrow Deeper Coulomb well

4.2.2) Screening

Now let us take care of electron-electron interactions.
Most importantly they screen the nucleus
 cancel except one.

4.2.2) Screening

In atom, lower shell electrons are closer to the nucleus, so they screen it (approximately completely) for all higher shell electrons:

Alkali atoms =1 electron on highest shell. Screening: Effectively a $\mathrm{Q}=1 \mathrm{e}$ nucleus

Noble gas atoms: many electrons on highest shell.
Less Screening since same shell electrons do not contribute
4.2.3) Periodic table

The two pictures above (filling up Hydrogen+ screening) explain the most important properties of the periodic table

Na $z=11$
$M g \quad z=12$

Periodic table

Periodic table See also www.ptable.com

A new period starts once a shell is filled
Chemical properties $\sim \mathrm{Ne}$ on outer shell only: periodicity

Periodic table

Ionisation energy of atoms in the period table $=$ energy needed to rip out the outermost electron

Without the Pauli principle, all atoms would be functioning very similarly = boring universe

4.2.4) X-ray spectra, revisited.

We can now also understand the characteristic X-ray peaks we learnt about in section 2.2.4)

4.3.) Molecules and Chemistry

Understand molecules from TISE, similar to atoms.
Simplest: molecular ion $\mathrm{H}_{2}{ }^{+}$

4.3.1) Molecular bonds

Let's assume far separated protons:

Q : what do you expect for the ground-state solution?

A: two
separate Hydrogen-like possibilities

Molecular bonds

Let's

 schematically write these as$$
\phi_{L}(\vec{r}) \quad \phi_{R}(\vec{r})
$$

Given by Eq. (134) but centered either on proton A or proton B.

Superposition principle: Should do both at the same time!!
Molecular electronic state: shared electron

$$
\begin{equation*}
\Psi(\vec{r})=\frac{1}{\sqrt{2}}\left(\phi_{L}(\vec{r})+\phi_{R}(\vec{r})\right) \tag{151}
\end{equation*}
$$

Molecular bonds

If we draw /calculate the electron density from this superposition state for closer protons

Molecular state has more negative charge between nucleii than unbound atom states would have

Molecular bonds

Now electron charge density has excess between the nucleii (compared to free atoms)

This is the essence of a
Covalent molecular bond: two nuclei share one (or more) electrons, placing the -ve electron charge more in-between the nucleii.

Q: molecules can do two things that atoms can't... which?

4.3.2) Molecular vibrations and rotations

4.3.3) Chemical Reactions

Two oxygen
One methane molecule $\mathrm{CH}_{4}$$+$Twolecules
$2 \mathrm{O}_{2}$
:---:
dioxide molecule
:---
molecules

In principle we could predict all chemical reactions based on the TDSE (85), if we included all nucleii and all electrons in the problem.
In practice very high dimensional wave-function (section 4.1.), usually impossible to solve.
Tricks \Rightarrow Quantum Chemistry

