3.4) Quantum Hydrogen atom

We have seen that a rigorous equation for the quantum behaviour of particles (their wavefunction) is given by Schrödinger's equation (SE).

We had required a "better atomic theory" than Bohr's model at the end of "week 7".

This can now be provided by quantum mechanics, based on the SE.

3.4.1) Schrödinger's equation for Hydrogen

Let us apply QM to the simplest atom: Hydrogen
Problem: 3D, can no longer use simple 1D eqns.

Recall Eq. (87), 3D SE. Now we need time-indep:

$$
E_{n} \Psi(x, y, z)=\left(-\frac{\hbar^{2}}{2 m}\left(\frac{\partial^{2}}{\partial x^{2}}+\frac{\partial^{2}}{\partial y^{2}}+\frac{\partial^{2}}{\partial z^{2}}\right)+U(x, y, z)\right) \Psi(x, y, z)
$$

Assume proton infinitely heavy, only electron moving.

$$
m=m_{e}
$$

Schrödinger's equation for Hydrogen

$E_{n} \Psi(x, y, z)=\left(-\frac{\hbar^{2}}{2 m}\left(\frac{\partial^{2}}{\partial x^{2}}+\frac{\partial^{2}}{\partial y^{2}}+\frac{\partial^{2}}{\partial z^{2}}\right)+U(x, y, z)\right) \Psi(x, y, z)$
Proton at origin of co-ordinate system

$\mathrm{x}, \mathrm{y}, \mathrm{z}$ electron position

Electrostatic potential from nucleus [see Eq. (67) for force]

$$
U(x, y, z)=-\frac{1}{4 \pi \epsilon_{0}} \frac{e^{2}}{r}(118 \mathrm{~b})
$$

Uses distance from origin: $r=\sqrt{x^{2}+y^{2}+z^{2}}$

Excursion/Reminder: Spherical polar coords.

We want one coordinate to be: $r=\sqrt{x^{2}+y^{2}+z^{2}}$
Add to that, angle between z axis and vector $\mathbf{r}=[\mathrm{x}, \mathrm{y}, \mathrm{z}]^{\mathrm{T}}$

$$
\begin{equation*}
\theta=\arccos \left(\frac{z}{r}\right) \tag{119}
\end{equation*}
$$

Finally, we need the angle between x axis and projection of \mathbf{r} into $\mathrm{x}-\mathrm{y}$ plane

$$
\begin{equation*}
\phi=\arctan \left(\frac{y}{x}\right) \tag{121}
\end{equation*}
$$

Schrödinger's equation for Hydrogen

We can rewrite the SE in spherical polar coordinates.
Difficult conversion of derivatives (advanced math)

TISE for the 3D Hydrogen atom

$\frac{1}{r^{2}} \frac{\partial}{\partial r}\left(r^{2} \frac{\partial \Psi}{\partial r}\right)+\frac{1}{r^{2} \sin \theta} \frac{\partial}{\partial \theta}\left(\sin \theta \frac{\partial \Psi}{\partial \theta}\right)$

$$
\begin{equation*}
+\frac{1}{r^{2} \sin ^{2} \theta} \frac{\partial^{2} \Psi}{\partial \phi^{2}}+\frac{2 m}{\hbar^{2}}[E-U(r)]=0 \tag{122}
\end{equation*}
$$

Wave function in polar
coordinates $\Psi=\Psi(r, \theta, \phi)$

Coulomb potential

$$
U(r)=-\frac{1}{4 \pi \epsilon_{0}} \frac{e^{2}}{r}
$$

3.4.2) Product wave function

Eq. (122) seems much harder than Eq. (118)
However, polar coordinates allow
Product Ansatz

$$
\begin{equation*}
\Psi=\Psi(r, \theta, \phi)=R(r) \Theta(\theta) \Phi(\phi) \tag{123}
\end{equation*}
$$

$R(r)$: Function that only depends on co-ordinate r
$\Theta(\theta)$: Function that only depends on co-ordinate θ
$\Phi(\phi)$: Function that only depends on co-ordinate ϕ

Product wave function

This in turn, allows "separation of variables":
Schematically:

1. Start with Eq. (122), insert (123)
2. Can write this as $\quad f(r, \theta)=g(\phi)$
some function some other function equation supposedly true for ANY value of r,theta,phi!!!
3. This means they have to be equal to a constant

$$
f(r, \theta)=\underbrace{\text { const } .=g(\phi)}_{\text {equation for phi }}
$$

4. Then again

$$
\left.h(r)=\text { const }_{2} .\right)=y(\theta)
$$

Product wave function

Get three

Seperated equations for Hydrogen wavefunction

$$
\begin{array}{r}
\frac{d^{2} \Phi}{d \phi^{2}}+m_{l}^{2} \Phi=0 \\
\frac{1}{\sin \theta} \frac{d}{d \theta}\left(\sin \theta \frac{d \Theta}{d \theta}\right)+\left[l(l+1)-\frac{m_{l}^{2}}{\sin ^{2} \theta}\right] \Theta=0 \\
\frac{1}{r^{2}} \frac{d}{d r}\left(r^{2} \frac{d R}{d r}\right)+\left[\frac{2 m}{\hbar^{2}}\left(\frac{e^{2}}{4 \pi \epsilon_{0} r}+E\right)-\frac{l(l+1)}{r^{2}}\right] R=0 \tag{126}
\end{array}
$$

Integers: $m_{l} l$
Energy: E

3.4.3) Hydrogen wave functions

As we have seen earlier [e.g. Eq. (115), harmonic oscillator], to get admissible solutions, quantum numbers may pop up

Hydrogen atom quantum numbers
from Eqn 126
Principal quantum number $n=1,2,3, \ldots, \infty$
Orbital quantum number from Eqn $125=0,1,2, \ldots, n-1$
from Eqn 124
Magnetic quantum number $m_{l}=0, \pm 1, \pm 2, \ldots, \pm l$
We skip the math of where they come from, but shall learn now what they mean....

Principal quantum number

The principal quantum number is linked to the energy \mathbf{E} in Eq. (126) via

$$
\begin{align*}
& \text { Hydrogen } \\
& \text { electron energies }
\end{align*} \quad E_{n}=-\frac{m e^{4}}{8 \epsilon_{0}^{2} h^{2}}\left(\frac{1}{n^{2}}\right)
$$

$=$ Bohr's theory correctly predicts energies in the Schrödinger model (Eq. 124-126).

Here the principal quantum number arises, because mathematically, Eq. (126) does not have a useful solution for any other energies.

Excursion/reminder: Angular Momentum

To understand the other two quantum numbers, let us revise angular momentum:

Angular momentum
of particle with momentum p around origin

$$
\begin{equation*}
\vec{L}=\vec{r} \times \vec{p} \tag{130}
\end{equation*}
$$

Orbital quantum number

It turns out orbital quantum number decides the
Magnitude of angular momentum of the electron

$$
\begin{equation*}
L=|\vec{L}|=\sqrt{l(l+1)} \hbar \tag{131}
\end{equation*}
$$

-Thus angular momentum is also quantized, since 1 is an integer.

- Note from Eq. (128), that the $\mathrm{n}=1$ ground-state must have zero angular momentum.
- In atomic physics, we use letter code:

$$
\begin{array}{rllllr}
1=0, & 1, & 2, & 3, & 4, & \text { e.g. } \mathrm{n}=3, \mathrm{l}=2 \\
\mathbf{s}, & \mathbf{p}, & \mathbf{d}, & \mathbf{f}, & \mathbf{g}, & =>3 \mathrm{~d} \text { state }
\end{array}
$$

Magnetic quantum number

Finally the magnetic quantum number decides the
z-component of angular momentum of the electron

$$
\begin{equation*}
L_{z}=\hat{k} \cdot \vec{L}=m_{l} \hbar \tag{132}
\end{equation*}
$$

- This determines the orientation of angular momentum
- Note other components L_{x} and Ly are completely unknown...

Uncertainties of angular momentum

...the latter is required due to the uncertainty relation (64).

Suppose we knew all three:

$$
\vec{L}=\left[0,0, L_{z}\right]^{T}
$$

- In this case we know, motion must be in the x, y plane (see pic)
- Thus uncertainty in zdirection

$$
{ }^{1} \Delta z=0
$$

-From Eq. (64): infinite momentum uncertainty
$\Delta p_{z}=\infty$
...which can't be

Uncertainties of angular momentum

The latter is fixed by keeping $\mathrm{L}_{\mathrm{x}}, \mathrm{L}_{\mathrm{y}}$ uncertain and having $L_{z}<|\vec{L}|$

-"Matching" classical orbital motion (red) then has $\Delta_{z} \neq 0$ as shown

again: We can never know all three components of an angular momentum precisely

Hydrogen wave functions

Let us finally take a look at how the electron wave functions in Hydrogen look like:
Ground-state: $\quad n=1, l=0, m=0 \quad$ or $\quad 1 s$

$$
\Psi_{100}(r, \theta, \phi)=\frac{1}{\sqrt{\pi} a_{0}^{3 / 2}} e_{(134)}^{-r / a_{0}} \quad \mathrm{a}_{0}=\text { Bohr radius, Eq. }(74 \mathrm{~b})
$$

3D: diffuse cloud. Never reaches

Hydrogen wave functions

Rydberg-state: $\quad n=50, l=49, m=49$ (=very high excited state)

$$
\begin{equation*}
\Psi_{n, n-1, n-1}(r, \theta, \phi) \sim\left(\sin [\theta] e^{i \phi}\right)^{n-1}\left(\frac{r}{a_{0}}\right)^{n-1} e^{-\frac{r}{a_{0} n}} \tag{135}
\end{equation*}
$$

Hydrogen wave functions

Low excited states: $\quad n=2, l=0, m=0$ or $2 S$
$\Psi_{200}(r, \theta, \phi)=\sim\left(2-\frac{r}{a_{0}}\right) e^{-r /\left(2 a_{0}\right)}$
3D: diffuse cloud, different signs, radial node!!

Hydrogen wave functions

 Low excited states: $\quad n=2, l=1, m=0, \pm 12 p$$$
\begin{equation*}
\Psi_{210}(r, \theta, \phi)=\sim \frac{r}{a_{0}} e^{-r /\left(2 a_{0}\right)} \cos (\theta) \tag{137}
\end{equation*}
$$

$$
\Psi_{21 \pm 1}(r, \theta, \phi)=\sim \frac{r}{a_{0}} e^{-r /\left(2 a_{0}\right)} \sin (\theta) e^{ \pm i \phi}
$$

Hydrogen wave functions

Summary:

- We can analytically solve the TISE for the Hydrogen atom, to find wave functions with three quantum numbers $\mathrm{n}, 1, \mathrm{~m}$, see Eq. 127-129.
-These describe energy and angular-momentum quantisation
-They are essential for understanding the periodic table (later \sim week 12) and for calculating probabilities for atomic processes...

Example: Use of Hydrogen wave functions

- Schematic how to calculate a stimulated emission probability:

Atomic state Time-dependence Atomic state at $\mathrm{t}=0$: from photon \mathbf{E}-field at $t=T$

$$
i \hbar \frac{\partial}{\partial t} \Psi(x, t)=\hat{H}(t) \Psi(x, t)
$$

3.4.4) Magnetic fields

The TISE (106) can treat atom in \mathbf{E} or \mathbf{B} field
Hamiltonian (101) on the rhs= total energy, hence add interaction energy (operators) due to e.g. interaction of current (due to electron) with magnetic field

Let us assume magnetic field in z-direction:

$$
\begin{equation*}
\vec{B}=B_{0} \hat{k} \tag{138}
\end{equation*}
$$

There is a magnetic moment associated with angular momentum, that has an energy shift in a field
ang. mom. \leftrightarrow motion \leftrightarrow currentloop \leftrightarrow energy in field

Magnetic fields

ang. mom. \leftrightarrow motion \leftrightarrow currentloop \leftrightarrow energy in field

From the calculation we find the
Normal Zeeman effect: energy shift of Hydrogen atom in external magnetic field Eq. (138)

$$
\Delta E_{\text {mag }}=\frac{\mu_{B} B_{0} m_{l}}{\hbar}
$$

$\mu_{B}=\frac{e \hbar}{2 m_{e}}=9.274 \times 10^{-24} \mathbf{J} / \mathbf{T} \quad$ is called Bohr magneton

Magnetic fields

splitting small vs energy for typical fields, but if zoom into line...

Hydrogen

3.5) (Electron) spin

Eq. (139) predict no shift for e.g. Hydrogen groundstate $\mathrm{n}=1, \mathrm{l}=0, \mathrm{~m}_{1}=0 \quad$ But we see one even worse: lines are split even without field it turns out

Electron (and most other particles) have an intrinsic angular momentum called spin

- First idea was "rotation about its axis", see drawing:
- Not true: Since size of electron so tiny, surface would need $v \gg \mathrm{c}$

(Electron) spin

Electron (and most other particles) have an intrinsic angular momentum called spin

- Still frequently helps to (carefully) have "rotation about its axis" in mind.
- Better though is to think of spin as making the electron in to a "tiny magnet" due to magnetic moment.

(Electron) spin

Electron has an intrinsic angular momentum called spin

- Electron spin is quantized with quantum numbers

$$
\begin{equation*}
s=\frac{1}{2} \quad m_{s}=-\frac{1}{2}, \frac{1}{2} \tag{140}
\end{equation*}
$$

- These have the same meaning as 1 and m_{l} for orbital (the other) angular momentum

Spin

Turns out most other fundamental (and composite) particles also have spin. It is fundamentally required to construct relativistic quantum physics
We classify particles (also compound ones like atoms) as follows
Particles with half-integer spin are called Fermions

$$
s=\frac{1}{2}, \frac{3}{2}, \frac{5}{2}, \ldots
$$

Examples: electron, quark, proton, atoms with odd number of neutrons Particles with integer spin are called Bosons

$$
\begin{array}{ll}
s=0,1,2, \ldots & \begin{array}{l}
\text { Examples: photon, gluon, } W \text {-Boson, } \\
\text { atoms with even number of neutrons }
\end{array}
\end{array}
$$

- We see next (week 11) why this is important

