## Phys106, II-Semester 2019/20, Assignment 3

Instructor: Sebastian Wüster

1. Write the Rayleigh Jeans law in terms of wavelength, i.e. we want  $u(\lambda)d\lambda$ , the total energy within a wavelength interval  $d\lambda$ . Take care in converting the differential  $d\nu$ . Solution:

The Rayleigh Jeans law in the terms of frequency is:

$$u(\nu)d\nu = \frac{8\pi k_b T \nu^2}{c^3} d\nu.$$

We know the relationship between frequency  $\nu$  and wavelength  $\lambda$ ;

$$u = c/\lambda \Rightarrow \frac{d\nu}{d\lambda} = -\frac{c}{\lambda^2} \Rightarrow d\nu = -\frac{c}{\lambda^2} d\lambda$$

Using the above two relationship we can write the Rayleigh Jeans law in terms of wavelength

$$u(\lambda)d\lambda = \frac{8\pi k_b T}{\lambda^4} d\lambda.$$

2. Ultraviolet light of wavelength 200 nm and intensity  $3.00 \text{ W/m}^2$  is directed at a Potassium surface. (a) Find the maximum kinetic energy of the photoelectrons (For the workfunction ( $\phi$ ) of Potassium see the book "Concept of Modern Physics by Arthur Beiser" ) (b) if 0.5 percent of the incident photons produce a photoelectron, how many electrons are emitted per second if the surface has an area of 4 cm<sup>2</sup>. Recall 1 Watt = 1J/s, i.e. energy per unit time.

## Solution:

(a) The photon energy is  $E = h\nu = 6.199$  eV. We find in the literature a workfunction for Potassium of  $\phi = 2.29$  eV. The kinetic energy of electrons is then:

$$K.E. = h\nu - \phi = 3.91eV,$$

(b) The energy of a single photon is  $E_p = h\nu = 9.93 \times 10^{-19} J$  and the total power (energy per second) falling on the surface of Lithium is,

 $W = Intensity \times area = (3.0W/m^2) \times (4 \times 10^{-4}m^2) = 12 \times 10^{-4} J/s.$ 

The number of photon per second falling on the surface of Lithium is then,

$$n_p = W/E_p \approx 1.2 \times 10^{15}/s_{\odot}$$

The number of electrons emitted per second from the surface of Lithium is,

$$n_e = 0.005 \times n_p = 6.0 \times 10^{12}/s.$$

3. Consider the light emitted by a 35 W room lamp. Assume this is all yellow light with  $\lambda = 600$  nm (in reality it is a mix of colors). How many photons per second are there? Why would quantum physics frequently be not that important in determining what happens due to this light? <u>Solution</u>:

The energy of a single photon in yellow light is,

$$E_p = h\nu = 3.31 \times 10^{-19} J.$$

Thus the number of photons per second emitted by the lamp is,

$$n_p = 35W/E_p = 1.0 \times 10^{20}/s.$$

This is a very large number and thus the fact that the photon number can only take discrete values will be mostly irrelevant. In other words, the difference between  $1.0 \times 10^{20}$  and  $1.0 \times 10^{20} - 1$  will typically be negligible.

4. Derive Eq. (20) of the lecture, that the number of standing waves within a cavity that have a frequency between  $\nu$  and  $\nu + d\nu$  is

$$G(\nu)d\nu = \frac{8\pi\nu^2}{c^3}d\nu\tag{1}$$

Proceed as follows:

- (i) Confirm that condition (16) for a standing wave can be re-written in terms of wave number as  $k = \frac{\pi}{L}n$  for  $n = 1, 2, 3, \cdots$ .
- (ii) 3D waves have a wave vector  $\mathbf{k} = [k_x, k_y, k_z]^T$ . The relation to frequency is  $2\pi\nu/|\mathbf{k}| = c$ .
- (iii) Now for 3D standing waves that fit into a cubic 3D cavity of volume  $V = L^3$ , the condition is  $k_j = \frac{\pi}{L} n_j$  for  $n_j = 1, 2, 3, \cdots$  and  $j \in \{x, y, z\}$ .
- (iv) That means, that in the space of all vectors  $\mathbf{k}$ , and allowed standing wave must always lie on one of the dots in Fig. 1. This space is called reciprocal space.
- (v) To infer  $G(\nu)d\nu$ , we have to now "count" the number of dots within a spherical shell of radius  $k(\nu)$  and thickness  $dk(d\nu)$ . We use that each dot effectively occupies a volume  $\left(\frac{\pi}{L}\right)^3$ . Also take into account that each wave can have two different polarisations (directions of the E-field vector within the wave), so we have to count it twice.
- (vi) Divide by the total volume of the cavity to get the number of waves *per unit volume*.
- (vii) Use all these steps to show Eq. 1 above.

<u>Solution</u>: (i): We know that the relationship between the  $\lambda$  and k is,

$$k = 2\pi/\lambda$$



Figure 1: Sketch of reciprocal space. Big dots indicate allowed 3D wave-vectors. Red shade indicates the volume effectively taken by one of these dots.

Putting this into eq. 16 we get,

$$k = \frac{\pi}{L}n$$

In 3D the wave vector have the form,

$$\mathbf{k} = [k_x, k_y, k_z]^T = k_x \hat{x} + k_y \hat{y} + k_z \hat{z},$$

where,  $k_x = \frac{\pi}{L}n_x$ ,  $k_y = \frac{\pi}{L}n_y$  and  $k_z = \frac{\pi}{L}n_z$  are the allowed wave vectors in the direction of x, y and z respectively such that they are associated with one of the points of the lattice in k-space (see Fig.1). Above  $\hat{x}$ ,  $\hat{y}$  and  $\hat{z}$  are unit vectors in the x,y,z directions.

We can see from the figure that each point in k-space effectively occupies a volume  $V_p = \left(\frac{\pi}{L}\right)^3$ .

(v): The volume of a spherical shell of radius  $k(\nu)$  and thickness  $dk(\nu)$  is  $4\pi k^2 dk$ but we are only interested in the positive value of  $n_x, n_y$  and  $n_z$  so we need to only consider the one-eighth of volume of spherical shell i.e.  $V_s = \frac{1}{8} \times 4\pi k^2 dk$ .

Now the number of standing waves in the shell is the number of points times two (polarisation)

$$N(k)dk = 2 \times V_s/V_p = \frac{k^2 L^3 dk}{\pi^2}.$$

Here the factor 2 takes care of polarisation of standing waves.

(vi): To get the number of standing waves per unit volume, we divide by the total volume of the cavity  $V_{cav} = L^3$ :

$$G(k)dk = \frac{k^2dk}{\pi^2},$$

Now we can use the relationship  $2\pi\nu/|\mathbf{k}| = c$  to write this in term of frequency as,

$$G(\nu)d\nu = \frac{8\nu^2 d\nu}{c^2} d\nu.$$

where we have used a similar conversion for the differentials as in the first question.