Phys106, II-Semester 2019/20, Assignment 2 solution

Instructor: Sebastian Wüster

1. A function f is called periodic with period T if $f(t+T)=f(t)$. The time average of a such a function is given by

$$
\begin{equation*}
\overline{f(t)}=\frac{1}{T} \int_{0}^{T} f(t) d t \tag{1}
\end{equation*}
$$

Calculate $\overline{\cos (\omega t)}, \overline{\sin (\omega t)}, \overline{\cos ^{2}(\omega t)}, \overline{\sin ^{2}(\omega t)}$. What average would you get when averaging over a larger number of periods $n T$?

Solution: We do both questions together, for the first one set $n=1$. For a large number of periods $n T$:

$$
\begin{align*}
\overline{\cos (\omega t)} & =\frac{1}{n T} \int_{0}^{n T} \cos (\omega t) d t=\frac{1}{n T}\left[\frac{1}{\omega} \sin (\omega t)\right]_{0}^{n T}=\frac{1}{n T}\left(\frac{\sin (\omega n T)-\sin (0)}{\omega}\right) \\
& =\frac{\sin (n T \omega)}{(n T \omega)} \stackrel{T \omega=2 \pi}{=} \frac{\sin (n 2 \pi)}{(n 2 \pi)}=0 \tag{2}\\
\overline{\sin (\omega t)} & =\frac{1}{n T} \int_{0}^{n T} \sin (\omega t) d t=-\frac{1}{n T}\left(\frac{\cos (\omega n T)-\cos (0)}{\omega}\right)=\frac{1-\cos (n 2 \pi)}{(n 2 \pi)}=0 \tag{3}\\
\overline{\cos ^{2}(\omega t)} & =\frac{1}{n T} \int_{0}^{n T} \frac{1+\cos (\omega t)}{2} d t \stackrel{E q .(2)}{=} \frac{1}{n T} \int_{0}^{n T} \frac{1}{2} d t=\frac{n T}{2 n T}=\frac{1}{2} \tag{4}\\
\overline{\sin ^{2}(\omega t)} & =\frac{1}{n T} \int_{0}^{n T} \frac{1-\cos (\omega t)}{2} d t \stackrel{E q .(3)}{=} \frac{1}{n T} \int_{0}^{n T} \frac{1}{2} d t=\frac{n T}{2 n T}=\frac{1}{2} \tag{5}
\end{align*}
$$

2. Do the missing steps in the lecture for the derivation of the double slit interference pattern:
(i) Start with Fig. 2 in week 3, using geometry, express r_{1} and r_{2} through z, L, and the angle θ of the vectors connecting the slits and location z on the screen. These angles are slightly different, make the approximation that they are equal, as shown in the attached sketch Fig. 1.
(ii) Also approximate the $r_{1,2}$ dependence of the prefactors of y_{1} and y_{2} (Fig. 2) as equal $r_{1} \approx r_{2} \approx L$. Do not do this approximation for $r_{1,2}$ within the argument of the wave (\sin) in Fig. 2.
(iii) Within $y(z, t)$, split the space and time dependence in the trigonometric functions into the form $f(t) g(x)$ using the trigonometric identity $\sin a+\sin b=$ $2 \sin \left(\frac{a+b}{2}\right) \cos \left(\frac{a-b}{2}\right)$.

Figure 1: Sketch of variables for double slit geometry.
(iv) Now calculate the intensity $I(z, t)=|y(z, t)|^{2}$, and perform the long time average over this using your results from question one. Simply define here $I_{0}=2 A^{2} / L^{2}$. Compare with the lecture or book.

Solution: (i)

See figure (1a),
path difference, $\left(r_{2}-r_{1}\right)=d \sin \theta$ and
$r_{1}=\frac{L}{\cos \theta}$

Fig.(1a)
(ii) Under the approximation $r_{1} \approx r_{2} \approx L$,

$$
\begin{aligned}
& y_{1}\left(r_{1}, t\right)=\frac{A}{L} \sin \left(k r_{1}-\omega t\right) \\
& y_{2}\left(r_{2}, t\right)=\frac{A}{L} \sin \left(k r_{2}-\omega t\right)
\end{aligned}
$$

(iii) Now we add the two waves to find

$$
\begin{aligned}
y(z, t) & =y_{1}\left(r_{1}(z), t\right)+y_{2}\left(r_{2}(z), t\right) \\
& =\frac{A}{L}\left[\sin \left(k r_{1}-\omega t\right)+\sin \left(k r_{2}-\omega t\right)\right]
\end{aligned}
$$

$$
\begin{aligned}
& =\frac{2 A}{L} \sin \left(\frac{k\left(r_{2}+r_{1}\right)-2 \omega t}{2}\right) \cos \left(\frac{k\left(r_{2}-r_{1}\right)}{2}\right) \\
& =\frac{2 A}{L} \sin (\phi-\omega t) \cos \left(\frac{k\left(r_{2}-r_{1}\right)}{2}\right)
\end{aligned}
$$

where $\phi=\frac{k\left(r_{1}+r_{2}\right)}{2}=\frac{\phi_{1}+\phi_{2}}{2}$ is the phase of the resultant wave.
(iv) For the intensity we square the wave (in reality there may be other factors, but a square of wave amplitude will be there):

$$
|y(z, t)|^{2}=\frac{4 A^{2}}{L^{2}} \sin ^{2}(\phi-\omega t) \cos ^{2}\left(\frac{k\left(r_{2}-r_{1}\right)}{2}\right)
$$

so the averaged intensity is

$$
I(z, t)=\overline{|y(z, t)|^{q}} \stackrel{\text { question } 1}{=} \frac{4 A^{2}}{L^{2}}\left\{\frac{1}{2}\right\} \cos ^{2}\left(\frac{k\left(r_{2}-r_{1}\right)}{2}\right)
$$

Now using $I_{0}=\frac{2 A^{2}}{L^{2}}$, we find

$$
I(z, t)=I_{0} \cos ^{2}\left(\frac{k\left(r_{2}-r_{1}\right)}{2}\right) .
$$

From (i), $\left(r_{2}-r_{1}\right)=d \sin \theta$ hence

$$
I(z, t)=I_{0} \cos ^{2}\left(\pi d \frac{\sin \theta}{\lambda}\right)
$$

as in the lecture.
3. The following wave equation is called "sine-Gordon equation":

$$
\begin{equation*}
\frac{\partial^{2}}{\partial t^{2}} f(x, t)-\frac{\partial^{2}}{\partial x^{2}} f(x, t)+\sin [f(x, t)]=0 . \tag{6}
\end{equation*}
$$

Determine if the superposition principle holds for this equation and why or why not. Solution:

The given equation is a non-linear differential equation in $f(x, t)$ and superposition principle does not hold for non-linear differential equations.
For example let $f_{1}(x, t)$ and $f_{2}(x, t)$ are two solutions of given differential equation then

$$
\begin{aligned}
& \frac{\partial^{2}}{\partial t^{2}} f_{1}(x, t)-\frac{\partial^{2}}{\partial x^{2}} f_{1}(x, t)+\sin \left[f_{1}(x, t)\right]=0 \\
& \frac{\partial^{2}}{\partial t^{2}} f_{2}(x, t)-\frac{\partial^{2}}{\partial x^{2}} f_{2}(x, t)+\sin \left[f_{2}(x, t)\right]=0
\end{aligned}
$$

If superposition principle hold then we would have,

$$
\frac{\partial^{2}}{\partial t^{2}}\left(f_{1}(x, t)+f_{2}(x, t)\right)-\frac{\partial^{2}}{\partial x^{2}}\left(f_{1}(x, t)+f_{2}(x, t)\right)+\sin \left[\left(f_{1}(x, t)+f_{2}(x, t)\right)\right]=0
$$

which is in general not true because $\sin \left[\left(f_{1}(x, t)+f_{2}(x, t)\right)\right] \neq \sin \left[\left(f_{1}(x, t)\right]+\right.$ $\left.\sin \left[f_{2}(x, t)\right)\right]$.
4. In the lecture we saw that two counter-propagating waves form a standing wave. Show that if one of them has a phase shift φ, as in:

$$
\begin{equation*}
y(x, t)=A \sin (k x-\omega t)+A \sin (-k x-\omega t+\varphi) \tag{7}
\end{equation*}
$$

we still get a standing wave, albeit with shifted positions of the minima.
Solution:

$$
\begin{aligned}
y(z, t)= & A \sin (k x-\omega t)+A \sin (-k x-\omega t+\varphi) \\
= & \frac{A}{2 \pi i}[\exp [i(k x-\omega t)]-\exp [-i(k x-\omega t)]+\exp [i(-k x-\omega t+\varphi)] \\
& -\exp [-i(-k x-\omega t+\varphi)]] \\
= & \frac{A}{2 \pi i}\left[e^{-i \omega t}\left(e^{i k x}+e^{i(-k x+\varphi)}\right)-e^{i \omega t}\left(e^{-i k x}+e^{i(k x-\varphi)}\right)\right] \\
= & \frac{A}{2 \pi i}\left[e^{-i\left(\omega t-\frac{\varphi}{2}\right)}\left(e^{i\left(k x-\frac{\varphi}{2}\right)}+e^{-i\left(k x-\frac{\varphi}{2}\right)}\right)-e^{i\left(\omega t-\frac{\varphi}{2}\right)}\left(e^{-i\left(k x-\frac{\varphi}{2}\right)}+e^{i\left(k x-\frac{\varphi}{2}\right)}\right)\right] \\
= & \frac{2 A}{2 \pi i}\left[e^{-i\left(\omega t-\frac{\varphi}{2}\right)} \cos \left(k x-\frac{\varphi}{2}\right)-e^{i\left(\omega t-\frac{\varphi}{2}\right)} \cos \left(k x-\frac{\varphi}{2}\right)\right] \\
= & \frac{2 A}{2 \pi i}\left[e^{-i\left(\omega t-\frac{\varphi}{2}\right)}-e^{i\left(\omega t-\frac{\varphi}{2}\right)}\right] \cos \left(k x-\frac{\varphi}{2}\right) \\
= & -2 A \sin \left(\omega t-\frac{\varphi}{2}\right) \cos \left(k x-\frac{\varphi}{2}\right)
\end{aligned}
$$

