Phys106, II-Semester 2019/20, Assignment 1 solution

Instructor: Sebastian Wüster

1. Show that $x(t)=A e^{-\frac{\gamma}{2} t} \cos (\tilde{\omega} t+\varphi)$ is a solution of the differential equation for the damped harmonic oscillator without driving (Eq. (1) of lecture with $F_{0}=0$). Here $\tilde{\omega}=\sqrt{\omega_{0}^{2}-\gamma^{2} / 4}$. What does the solution imply? Discuss its physical meaning and that of all parameters in it.
Solution: Equation for a damped harmonic oscillator:

$$
\begin{equation*}
\frac{d^{2} x(t)}{d t^{2}}=-\omega_{0}^{2} x(t)-\gamma \frac{d x(t)}{d t} \tag{1}
\end{equation*}
$$

To check if $x(t)=A e^{-\frac{\gamma}{2} t} \cos (\tilde{\omega} t+\varphi)$ is a solution to above equation, we will substitute this $x(t)$ in the above equation. A true solution would give $L H S=R H S$. First, we calculate the derivatives (applying chain rule):

$$
\begin{align*}
\frac{d x(t)}{d t} & =-\frac{A \gamma}{2} e^{-\gamma t / 2} \cos (\tilde{\omega} t+\varphi)-A \tilde{\omega} e^{-\frac{\gamma}{2} t} \sin (\tilde{\omega} t+\varphi) \tag{2}\\
\frac{d^{2} x(t)}{d t^{2}} & =\frac{A \gamma^{2}}{4} e^{-\gamma t / 2} \cos (\tilde{\omega} t+\varphi)-A \tilde{\omega}^{2} e^{-\gamma t / 2} \cos (\tilde{\omega} t+\varphi)+A \gamma \tilde{\omega} e^{-\frac{\gamma}{2} t} \sin (\tilde{\omega} t+\varphi)
\end{align*}
$$

Substituting $x(t)$ and $d x(t) / d t$ in RHS of Eq. (1):

$$
\begin{align*}
-\omega_{0}^{2} x(t)-\gamma \frac{d x(t)}{d t}= & -\tilde{\omega}^{2} x(t)-\frac{\gamma^{2}}{4} x(t)-\gamma \frac{d x(t)}{d t} \\
= & -A \tilde{\omega}^{2} e^{-\frac{\gamma}{2} t} \cos (\tilde{\omega} t+\varphi)-A \frac{\gamma^{2}}{4} e^{-\frac{\gamma}{2} t} \cos (\tilde{\omega} t+\varphi) \\
& +\frac{A \gamma^{2}}{2} e^{-\gamma t / 2} \cos (\tilde{\omega} t+\varphi)+A \gamma \tilde{\omega} e^{-\frac{\gamma}{2} t} \sin (\tilde{\omega} t+\varphi) \\
= & \frac{d^{2} x(t)}{d t^{2}}=L H S \tag{3}
\end{align*}
$$

This implies, the motion of a damped harmonic oscillator is still oscillatory, however (a) the amplitude of oscillation acquires time dependence: it decays exponentially; and (b) the frequency oscillation acquires a dependence on damping parameter γ. Physically, it means there are three cases possible:

- $\omega_{0}^{2}-\gamma^{2} / 4<0$: "Overdamped" - motion is not oscillatory
- $\omega_{0}^{2}-\gamma^{2} / 4=0$: "critical damping" - not oscillatory and rapidly decaying
- $\omega_{0}^{2}-\gamma^{2} / 4=0$: "underdamped" - oscillatory but decays over time

2. Do the missing steps in the lecture for the solution of the driven, damped harmonic oscillator. To this end:
(i) Insert the Ansatz $x(t)=A \sin (\omega t)+B \cos (\omega t)$ into Eq. (1).
(ii) Separately equate coefficients of \sin and of cos on the left-hand-side (lhs) and rhs.
(iii) This gives you two equations for the two coefficients A and B. Solve these to get A and B.
(iv) Find a rule how you can express $A \sin (\omega t)+B \cos (\omega t)=C \sin (\omega t+\varphi)$ online or in your math books/lextures, to find C and φ in terms of A and B.
(v) Verify your C and φ agree with those given in the lecture, if need by by plotting them on top of each other.

Solution: (i) Substitution:

$$
\begin{aligned}
-A \omega^{2} \sin (\omega t)-B \omega^{2} \cos (\omega t)= & -\omega_{0}^{2}(A \sin (\omega t)+B \cos (\omega t))+F_{0} \sin (\omega t) \\
& -\gamma(A \omega \cos (\omega t)-B \omega \sin (\omega t)) \\
= & \left(-A \omega_{0}^{2}+F_{0}+B \gamma \omega\right) \sin (\omega t)+\left(-B \omega_{0}^{2}-A \gamma \omega\right) \cos (\omega t)
\end{aligned}
$$

(ii) Comparing coefficients:

$$
\begin{align*}
& -A \omega^{2}=-A \omega_{0}^{2}+F_{0}+B \gamma \omega ; \tag{4}\\
& -B \omega^{2}=-B \omega_{0}^{2}-A \gamma \omega \tag{5}
\end{align*}
$$

(iii) Solving for A and B :

$$
\begin{align*}
A & =\frac{F_{0}}{\gamma^{2} \omega^{2}+\left(\omega_{0}^{2}-\omega^{2}\right)^{2}}\left(\omega_{0}^{2}-\omega^{2}\right) \tag{6}\\
B & =-\frac{\gamma \omega F_{0}}{\gamma^{2} \omega^{2}+\left(\omega_{0}^{2}-\omega^{2}\right)^{2}} \tag{7}
\end{align*}
$$

(iv) Using:

$$
\begin{align*}
A \sin (\omega t)+B \cos (\omega t) & =\sqrt{A^{2}+B^{2}}(\cos \varphi \sin (\omega t)+\sin \varphi \cos (\omega t)) \\
& =\sqrt{A^{2}+B^{2}} \sin (\omega t+\varphi) \tag{8}
\end{align*}
$$

where, $\cos \varphi \equiv A / \sqrt{A^{2}+B^{2}}$. Using this formula, we obtain:

$$
\begin{align*}
C & =\sqrt{A^{2}+B^{2}} \\
& =\sqrt{\frac{F_{0}^{2}\left(\gamma^{2} \omega^{2}+\left(\omega_{0}^{2}-\omega^{2}\right)^{2}\right)}{\left(\gamma^{2} \omega^{2}+\left(\omega_{0}^{2}-\omega^{2}\right)^{2}\right)^{2}}} \\
& =\frac{\left|F_{0}\right|}{\sqrt{\gamma^{2} \omega^{2}+\left(\omega_{0}^{2}-\omega^{2}\right)^{2}}} \tag{9}
\end{align*}
$$

Calculating φ :

$$
\begin{align*}
& \cos \varphi \equiv A / \sqrt{A^{2}+B^{2}} \\
\Longrightarrow & \tan \varphi=\frac{B}{A}=-\frac{\gamma \omega}{\omega_{0}^{2}-\omega^{2}} \\
\Longrightarrow & \varphi=\arctan \left(\frac{\gamma \omega}{\omega^{2}-\omega_{0}^{2}}\right)+n \pi ; \quad n \in \mathbb{Z} \tag{10}
\end{align*}
$$

(v) The solution for C matches the one in lecture. The solution for φ matches upto an additive constant $n \pi$ where $n \in \mathbb{Z}$.
3. Use a computer tool to plot the amplitude C and phase angle φ for different parameters. Try to explore some parameters where the curves plotted are much different from those in the lecture, and discuss why.
Solution: Plotting using Mathematica.
To plot C vs. ω / ω_{0}, we redefine C using a new variable $z \equiv \omega / \omega_{0}$:

$$
C=\frac{|F|_{0}}{\sqrt{\left(\frac{\gamma}{\omega_{0}}\right)^{2} z^{2}+\left(z^{2}-1\right)^{2}}}
$$

We plot the graph for three cases (here, $\gamma / \omega_{0} \equiv k$): (a) $k=0.1$, (b) $k=1$ and (c) $k=10$ with a constant F_{0} (say $F_{0}=1$):

Cases (b) and (c) give different plots. They correspond to high damping scenario. A generic plot for arctan is given below:

We would like to plot φ vs. ω / ω_{0}, so we redefine φ using a new variable $u \equiv \omega / \omega_{0}$
and take $n=0$ for convenience:

$$
\varphi=\arctan \left(\frac{\gamma u}{\omega_{0}\left(u^{2}-1\right)}\right)
$$

Like before, plotting three different cases (with, $\gamma / \omega_{0} \equiv k$): (a) $k=0.1$, (b) $k=1$ and (c) $k=10$:

Plot $\left[\{\right.$ phi $/ . k \rightarrow 0.1$, phi $/ . k \rightarrow 1$, phi $/ . k \rightarrow 10\},\{u,-1,1\}$, AxesLabel $\rightarrow\left\{\omega / \omega_{0}, \varphi\right\}$, PlotLegends \rightarrow "Expressions"]

In cases (a) and (b), the graph is different from the one in lecture (which matches case (c)).

