PHY 106 Quantum Physics Instructor: Sebastian Wüster, IISER Bhopal, 2020

Book: Wave "groups" ^{iss above only.} ct me if you spot a mistake.

2.3) Wave packets and dispersion

Week (

Movies: Elm waves are also particles

What if traditional particles (electrons) are also waves?

But particle can be in a specific place

Extended travelling wave? Is not!!!

https://phet.colorado.edu/sims/html/waveon-a-string/latest/wave-on-a-string_en.html

But in our rope app/experiment, can also see wave **pulse**:

Here we could say wave is in a specific place

How to get from sin/cos wave to pulse?

It is useful to keep discussing (also pulse) waves in terms of *sin* and *cos*, since all our week 3 material will apply!

Idea: use superposition principle to combine *different* sine waves into hump?

2.3.1.) Beating of two waves

Recall question from tutorial 2:

Adding two sines with slight wavelength difference Middle bit-> pulse

Beating of two waves

Beating of two waves
Total:

$$y_{tot}(x) = 2A \cos \left[\left(\frac{\pi}{\lambda_1} - \frac{\pi}{\lambda_2} \right) x \right] \cos \left[\left(\frac{\pi}{\lambda_1} + \frac{\pi}{\lambda_2} \right) x \right]$$

Envelope:
 $k_{low} = (k_1 - k_2)/2$
Carrier:
 $k_{high} = (k_1 + k_2)/2$

Note: The math above simply gives us a product of two cosines. Which we call carrier and which envelope, simply is decided by which one has the much larger wavelength (that cosine is called envelope)

2.3.2) Fourier decomposition

We managed to make wave more "pulsey" by adding two.

We can **perfectly** form **any** function if we take more waves:

Fourier theorem:

Any even function f(x) can be written as:

$$f(x) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} dk \ \tilde{g}(k) \ \cos(kx) \quad \text{(42)}$$

If f(x) is periodic with period L
$$f(x) = \sum_{n=0}^{\infty} g_n \cos\left(\frac{2\pi n}{L}x\right) \quad \text{(43)}$$

Fourier theorem:

Any even function f(x) can be written as:

1

 $r \infty$

$$f(x) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} dk \ \tilde{g}(k) \ \cos(kx)$$
(42)
If f(x) is periodic:
$$f(x) = \sum_{n=0}^{\infty} g_n \cos\left(\frac{2\pi n}{L}x\right)$$
(43)

The coefficients g_n can be found via:

$$g_n = \frac{2}{L} \int_{-L/2}^{L/2} dx \ f(x) \cos\left(\frac{2\pi n}{L}x\right)$$
(44)

BONUS MATERIAL: Fourier decomposition

Of course it also works for odd functions f(x)=-f(-x), using *sines*

$$f(x) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} dk \quad \tilde{g}(k) \quad \sin(kx)$$

$$f(x) = \sum_{n=0}^{\infty} h_n \sin\left(\frac{2\pi n}{L}x\right) \quad h_n = \frac{2}{L} \int_{-L/2}^{L/2} dx \quad f(x) \sin\left(\frac{2\pi n}{L}x\right)$$

$$(45)$$

$$(45)$$

$$(47)$$

BONUS: Fourier decomposition

More generally **any** function f(x) can be written as:

$$f(x) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} dk \ \tilde{f}(k) \ e^{ikx}$$
(48)

with

$$\tilde{f}(k) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} dx \ f(x) \ e^{-ikx}$$
(49)

using

$$e^{ikx} \equiv \cos(kx) + \underbrace{i}_{=\sqrt{-1}} \sin(kx)$$
 (50)

To see the complete animation, follow this link: <u>http://home.iiserb.ac.in/~sebastian/</u> material/QuantPhys/fourier_sawtooth.mp4 Legend: (see Eq. 43 and 44) f(x) = sawtooth function black line cumulative sum $s_n(x) = \sum_{m=0}^n g_m \cos\left(\frac{2\pi m}{L}x\right)$ red dashed blue or magenta trial cosine $\cos\left(\frac{2\pi n}{I}x\right)$

 $g_n < 10^{-5}$ $g_n > 10^{-5}$

2.3.3) Gaussian wave packet

We call the combination of **many waves** a **wave packet**

A neat case is the Gaussian wave packet

Math: Gaussian function $\mathcal{I}_{\mathcal{I}}^{\mathsf{E}_{\mathcal{I}}^{\mathsf{0.8}}} \mathcal{I}_{\mathcal{I}}^{\mathsf{0.8}} \mathcal{I}_{\mathcal{I}}^{\mathsf{1}} = \mathcal{I}_{\mathcal{I}}^{\mathsf{1}} \mathcal{I}_{\mathcal{I}$ $(x - x_0)^2$ $2\sigma_X^2$ g(x)0.2 0 -5 -4 -3 -2 -1 0 2 3 4 5 x-x₀

- σ_x is called the width (or standard deviation) of the Gaussian
- Pre-factor fixes normalisation

$$\int_{-\infty}^{\infty} dx \ g(x) = 1$$

Gaussian wave packet

We call the combination of **many waves** a wave packet

A neat case is the

Gaussian wave packet $f(x) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} dk \ \tilde{g}(k) \ \cos(kx) \quad \text{repeat (42)}$ $\tilde{g}(k) = \frac{1}{\sqrt{2\pi\sigma_k}} e^{-\frac{(k-k_0)^2}{2\sigma_k^2}}$

(51)

Gaussian wave packet $f(x) \sim \int_{-\infty}^{\infty} dk \ e^{-\frac{(k-k_0)^2}{2\sigma_k^2}} \cos(kx)$ $f(x) \sim e^{-\frac{x^2}{2\sigma_x^2}} \cos(k_0 x)$

Envelope of Gaussian-w.p. is again Gaussian:

To see the complete animation, follow this link: <u>http://home.iiserb.ac.in/~sebastian/</u> material/QuantPhys/fourier_gaussian_carrier.mp4 **Legend:** (see Eq. 43 and 44) $f(x) \sim e^{-\frac{x^2}{2\sigma_x^2}} \cos(k_0 x)$ black line red dashed cumulative sum $s_n(x) = \sum_{n=1}^{n} g_m \cos\left(\frac{2\pi m}{L}x\right)$ m=0blue or magenta trial cosine $\cos\left(\frac{2\pi n}{I}x\right)$ $g_n < 10^{-5}$ $g_n > 10^{-5}$

Gaussian wave packet (math version) factor to give overall scale of function $f(x) = \mathcal{N} \int_{-\infty}^{\infty} dk \ e^{-\frac{(k-k_0)^2}{2\sigma_k^2}} \cos(kx)$

We can solve the above integral and find:

$$f(x) = \mathcal{N}\sqrt{2\pi}\sigma_k e^{-\frac{x^2\sigma_k^2}{2}}\cos(k_0 x)$$

We can write this as

$$f(x) = \tilde{\mathcal{N}}e^{-\frac{x^2}{2\sigma_x^2}}\cos(k_0 x)$$
 with $\sigma_x = 1/\sigma_k$

...as we did on the previous slide.

Gaussian wave packet

$$f(x) \sim \int_{-\infty}^{\infty} dk \ e^{-\frac{(k-k_0)^2}{2\sigma_k^2}} \cos(kx)$$

Envelope of Gaussian-w.p. is again Gaussian:

 If we want a more localised wave packet, we need a larger range of wave lengths!!!

Dispersion For waves in a medium, the phase velocity V may depend on the wave frequency ω .

- •In other words, the relation between ω and k is not **proportional** (as in $\omega = Vk$)
- •Then phase velocity $V = \omega/k$ is not constant

We call the dependence of ω on k**Dispersion relation** $\omega = f(k)$ some function f

Dispersion

•Wave Eqn. (13) predicts equal phase velocity V=const. for all waves

$$\frac{\partial^2}{\partial x^2} y(x,t) = \frac{1}{V^2} \frac{\partial^2}{\partial t^2} y(x,t)$$

•Thus if we have dispersion it needs modification, e.g.

$$\frac{\partial^2}{\partial x^2} y(x,t) - \alpha \frac{\partial^4}{\partial x^4} y(x,t) = \frac{1}{\beta^2} \frac{\partial^2}{\partial t^2} y(x,t)$$

(I don't tell you what α,β are, this is just an example for the mathematical structure)

Dispersion

https://www.youtube.com/watch?v=KbmOcT5sX7I

Dispersion

Example:

•The dependence of phase velocity on frequency/ wavenumber is often weak i.e. $V(\omega) \approx V_0 \quad \forall \omega$

2.3.5) Group velocity

Consider Gaussian wave-packet

$$f(x) \sim \int_{-\infty}^{\infty} dk \ e^{-\frac{(k-k_0)^2}{2\sigma_k^2}} \cos(kx)$$

Now lets make waves moving

$$f(x,t) \sim \int_{-\infty}^{\infty} dk \ e^{-\frac{(k-k_0)^2}{2\sigma_k^2}} \frac{\cos(kx-\omega t)}{\cos[k(x-Vt)]}$$

If no dispersion: $\omega = Vk$ (see Eq. 8, same V)

Group velocity

Moving Gaussian wave-packet without dispersion

2.3.5) Group velocity

Consider Gaussian wave-packet

$$f(x) \sim \int_{-\infty}^{\infty} dk \ e^{-\frac{(k-k_0)^2}{2\sigma_k^2}} \cos(kx)$$

Now lets make waves moving

$$f(x,t) \sim \int_{-\infty}^{\infty} dk \ e^{-\frac{(k-k_0)^2}{2\sigma_k^2}} \cos[k(x-V(k)t)]$$

If dispersion: **Different** velocities *V*(*k*) for different "k" parts of wavepacket

Group velocity

Moving Gaussian wave-packet

https://blog.soton.ac.uk/soundwaves/further-concepts/2-dispersive-waves/

Simpler example: Motion of beating waves

Go back to beating example

Assume two

different waves

 $y_1(x,t) = A\cos[(\omega - \Delta \omega/2)t - (k - \Delta k/2)x]$

 $y_2(x,t) = A\cos[(\omega + \Delta\omega/2)t - (k + \Delta k/2)x]$

second has only slightly different ω and k.

Motion of beating waves Add them as in section 2.3.1.) $y(x,t) = y_1(x,t) + y_2(x,t)$ $= 2A \cos\left(\frac{\Delta\omega}{2}t - \frac{\Delta k}{2}x\right) \cos(\omega t - kx)$ (53)

Moving Envelope: Moving Carrier:

•See book for details.

velocity!!

Motion of beating waves

$$y = 2A \cos\left(\frac{\Delta \omega}{2}t - \frac{\Delta k}{2}x\right) \frac{\cos(\omega t - kx)}{Moving Carrier:}$$

Moving Envelope: phase velocity

Using Eq. (8) we infer for motion of envelope

