Week (5

PHY 106 Quantum Physics
Instructor: Sebastian Wüster, IISER Bhopal, 2020

Book: Wave "groups"

2.3) Wave packets and dispersion

Movies: Elm waves are also particles
What if traditional particles
(electrons) are also waves?
But particle can be in a specific place
Extended travelling wave? Is not!!!
https://phet.colorado.edu/sims/html/wave-on-a-string/latest/wave-on-a-string_en.html

But in our rope app/experiment, can also see wave pulse:

How to get from sin/cos wave to pulse?

It is useful to keep discussing (also pulse) waves in terms of sin and cos, since all our week 3 material will apply!

Idea: use superposition principle to combine different sine waves into hump?
2.3.1.) Beating of two waves

Recall question from tutorial 2 :
Adding two sines with slight wavelength difference Middle bit-> pulse

Beating of two waves

Beating of two waves

Let's do the math:

$$
y_{t o t}(x)=y_{1}(x)+y_{2}(x)
$$

$$
y_{1}(x)=A \cos \left(\frac{2 \pi}{\lambda_{1}} x\right)+y_{2}(x)=A \cos \left(\frac{2 \pi}{\lambda_{2}} x\right)
$$

Use
$\cos (a)+\cos (b)=2 \cos \left(\frac{a+b}{2}\right) \cos \left(\frac{a-b}{2}\right)$

$$
y_{\text {tot }}(x)=2 A \cos \left[\left(\frac{\pi}{\lambda_{1}}+\frac{\pi}{\lambda_{2}}\right) x\right] \cos \left[\left(\frac{\pi}{\lambda_{1}}-\frac{\pi}{\lambda_{2}}\right) x\right]
$$

Beating of two waves

$y_{\text {tot }}(x)=2 A \cos \left[\left(\frac{\pi}{\lambda_{1}}-\frac{\pi}{\lambda_{2}}\right) x\right] \cos \left[\left(\frac{\pi}{\lambda_{1}}+\frac{\pi}{\lambda_{2}}\right) x\right]$

Envelope:

$k_{\text {low }}=\left(k_{1}-k_{2}\right) / 2$
Carrier:

Beating of two waves

$\begin{aligned} & \text { Total: } \\ & y_{\text {tot }}(x)=2 A \cos \left[\left(\frac{\pi}{\lambda_{1}}-\frac{\pi}{\lambda_{2}}\right) x\right] \cos \left[\left(\frac{\pi}{\lambda_{1}}+\frac{\pi}{\lambda_{2}}\right) x\right]\end{aligned}$
Envelope:

$$
k_{\text {low }}=\left(k_{1}-k_{2}\right) / 2 \quad k_{\text {high }}=\left(k_{1}+k_{2}\right) / 2
$$

Carrier:

Beating of two waves

Total:
$\underline{y_{t o t}(x)}=2 A \cos \left[\left(\frac{\pi}{\lambda_{1}}-\frac{\pi}{\lambda_{2}}\right) x\right] \cos \left[\left(\frac{\pi}{\lambda_{1}}+\frac{\pi}{\lambda_{2}}\right) x\right]$

Envelope:

$k_{\text {low }}=\left(k_{1}-k_{2}\right) / 2$

Carrier:
$k_{\text {high }}=\left(k_{1}+k_{2}\right) / 2$

Note: The math above simply gives us a product of two cosines. Which we call carrier and which envelope, simply is decided by which one has the much larger wavelength (that cosine is called envelope)

2.3.2) Fourier decomposition

We managed to make wave more "pulsey" by adding two.
We can perfectly form any function if we take more waves:

Fourier theorem:

Any even function $f(x)$ can be written as:

$$
\begin{equation*}
f(x)=\frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{\infty} d k \tilde{g}(k) \cos (k x) \tag{42}
\end{equation*}
$$

If $\mathrm{f}(\mathrm{x})$ is periodic with period L

$$
\begin{equation*}
f(x)=\sum_{n=0}^{\infty} g_{n} \cos \left(\frac{2 \pi n}{L} x\right) \tag{43}
\end{equation*}
$$

Fourier decomposition

Fourier theorem:

Any even function $f(x)$ can be written as:

$$
\begin{equation*}
f(x)=\frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{\infty} d k \tilde{g}(k) \cos (k x) \tag{42}
\end{equation*}
$$

If $f(x)$ is periodic:

$$
\begin{equation*}
f(x)=\sum_{n=0}^{\infty} g_{n} \cos \left(\frac{2 \pi n}{L} x\right) \tag{43}
\end{equation*}
$$

The coefficients g_{n} can be found via:

$$
\begin{equation*}
g_{n}=\frac{2}{L} \int_{-L / 2}^{L / 2} d x f(x) \cos \left(\frac{2 \pi n}{L} x\right) \tag{44}
\end{equation*}
$$

BONUS MATERIAL: Fourier decomposition

Of course it also works for odd functions $f(x)=-f(-x)$, using sines

$$
\begin{align*}
& f(x)=\frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{\infty} d k \tilde{g}(k) \sin (k x) \tag{45}\\
& f(x)=\sum_{n=0}^{\infty} h_{n} \sin \left(\frac{2 \pi n}{L} x\right) \quad h_{n}=\frac{2}{L} \int_{-L /}^{L / 2} d x f(x) \sin \left(\frac{2 \pi n}{L} x\right)
\end{align*}
$$

BONUS: Fourier decomposition

More generally any function $f(x)$ can be written as:

$$
\begin{equation*}
f(x)=\frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{\infty} d k \tilde{f}(k) e^{i k x} \tag{48}
\end{equation*}
$$

with

$$
\begin{equation*}
\tilde{f}(k)=\frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{\infty} d x f(x) e^{-i k x} \tag{49}
\end{equation*}
$$

using

$$
\begin{align*}
& e^{i k x} \equiv \cos (k x)+ \underbrace{i} \sin (k x) \tag{50}\\
&=\sqrt{-1}
\end{align*}
$$

Fourier decomposition

Example: Sawtooth curve (see fourie__deoomposition_v1.m)

Discard this (g_{n} small), since wavelength wrong See webapps in tutorial 5, for this!!!

Fourier decomposition

Example: Sawtooth curve

Keep this (g_{n} large), since wavelength good

Fourier decomposition

Example: Sawtooth curve

Need shorter wavelengthes for small features

To see the complete animation, follow this link: http://home.iiserb.ac.in/~sebastian/ material/QuantPhys/fourier sawtooth.mp4

Legend: (see Eq. 43 and 44)
black line $\quad f(x)=$ sawtooth function
red dashed
cumulative sum $s_{n}(x)=\sum_{m=0}^{n} g_{m} \cos \left(\frac{2 \pi m}{L} x\right)$
blue or magenta
$g_{n}<10^{-5} \quad g_{n}>10^{-5}$
trial cosine $\cos \left(\frac{2 \pi n}{L} x\right)$

2.3.3) Gaussian wave packet

We call the combination of many waves a wave packet

A neat case is the Gaussian wave packet

Math: Gaussian function

$$
g(x)=\frac{1}{\left.\sqrt{2 \pi}\right|_{x}} e^{-\frac{\left(x-x_{0}\right)^{2}}{\left|2 \sigma_{x}\right|}}
$$

- σ_{x} is called the width (or standard deviation) of the Gaussian
- Pre-factor fixes normalisation

$$
\int_{-\infty}^{\infty} d x g(x)=1
$$

Gaussian wave packet

We call the combination of many waves a wave packet

A neat case is the
Gaussian wave packet

$$
\begin{align*}
& f(x)=\frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{\infty} d k \tilde{g}(k) \cos (k x) \quad \text { repeat (42) } \\
& \tilde{g}(k)=\frac{1}{\sqrt{2 \pi} \sigma_{k}} e^{-\frac{\left(k-k_{0}\right)^{2}}{2 \sigma_{k}^{2}}} \tag{51}
\end{align*}
$$

Gaussian wave packet

$$
\begin{aligned}
& f(x) \sim \int_{-\infty}^{\infty} d k e^{-\frac{\left(\alpha-k_{0}\right)^{2}}{2 \sigma_{k}^{2}}} \cos (k x) \\
& f(x) \sim e^{-\frac{x^{2}}{2 \sigma_{x}^{2}}} \cos \left(k_{0} x\right)
\end{aligned}
$$

Envelope of Gaussian-w.p. is again Gaussian:

To see the complete animation, follow this link: http://home.iiserb.ac.in/~sebastian/ material/QuantPhys/fourier gaussian carrier.mp4

Legend: (see Eq. 43 and 44) black line

$$
f(x) \sim e^{-\frac{x^{2}}{2 \sigma_{x}^{2}}} \cos \left(k_{0} x\right)
$$

red dashed
cumulative sum $s_{n}(x)=\sum_{m=0}^{n} g_{m} \cos \left(\frac{2 \pi m}{L} x\right)$
blue or magenta
$g_{n}<10^{-5} \quad g_{n}>10^{-5} \quad$ trial cosine $\cos \left(\frac{2 \pi n}{L} x\right)$

Gaussian wave packet (math version)
factor to give overall scale of function

$$
f(x)=\mathscr{N} \int_{-\infty}^{\infty} d k e^{-\frac{\left(k-k_{0}\right)^{2}}{2 \sigma_{k}^{2}}} \cos (k x)
$$

We can solve the above integral and find:

$$
f(x)=\mathcal{N} \sqrt{2 \pi} \sigma_{k} e^{-\frac{x^{2} \sigma_{k}^{2}}{2}} \cos \left(k_{0} x\right)
$$

We can write this as

$$
f(x)=\tilde{\mathscr{N}} e^{-\frac{x^{2}}{2 \sigma_{x}^{2}}} \cos \left(k_{0} x\right) \quad \text { with } \quad \sigma_{x}=1 / \sigma_{k}
$$

...as we did on the previous slide.

Gaussian wave packet

$$
f(x) \sim \int_{-\infty}^{\infty} d k e^{-\frac{\left(k-k_{0}\right)^{2}}{2 \sigma_{k}^{2}}} \cos (k x)
$$

Envelope of Gaussian-w.p. is again Gaussian:

Gaussian wave packet

$$
f(x) \sim \int_{-\infty}^{\infty} d k e^{-\frac{\left(k-k_{0}\right)^{2}}{2 \sigma_{k}^{2}}} \cos (k x)
$$

Gaussian: x and k widths are inverse

$$
\begin{equation*}
\sigma_{x}=1 / \sigma_{k} \tag{52}
\end{equation*}
$$

- If we want a more localised wave packet, we need a larger range of wave lengths!!!

Examples:

2.3.4) Dispersion

Dispersion For waves in a medium, the phase velocity V may depend on the wave frequency ω.

- In other words, the relation between ω and k is not proportional (as in $\omega=V k$)
-Then phase velocity $V=\omega / k$ is not constant
We call the dependence of ω on k Dispersion relation $\omega=f(k)$

Dispersion

-Wave Eqn. (13) predicts equal phase velocity $\mathrm{V}=$ const. for all waves

$$
\frac{\partial^{2}}{\partial x^{2}} y(x, t)=\frac{1}{V^{2}} \frac{\partial^{2}}{\partial t^{2}} y(x, t)
$$

-Thus if we have dispersion it needs modification, e.g.

$$
\frac{\partial^{2}}{\partial x^{2}} y(x, t)-\alpha \frac{\partial^{4}}{\partial x^{4}} y(x, t)=\frac{1}{\beta^{2}} \frac{\partial^{2}}{\partial t^{2}} y(x, t)
$$

(I don't tell you what α, β are, this is just an example for the mathematical structure)

Dispersion

https://www.youtube.com/watch?v=KbmOcT5sX7I

Dispersion

Example:

-The dependence of phase velocity on frequency/ wavenumber is often weak i.e. $V(\omega) \approx V_{0} \quad \forall \omega$
C/V Lanthanum dense flint LaSF9

2.3.5) Group velocity

Consider Gaussian wave-packet

$$
f(x) \sim \int_{-\infty}^{\infty} d k e^{-\frac{\left(k-k_{0}\right)^{2}}{2 \sigma_{k}^{2}}} \cos (k x)
$$

Now lets make waves moving

$$
f(x, t) \sim \int_{-\infty}^{\infty} d k e^{-\frac{\left(k-k_{0}\right)^{2}}{2 \sigma_{k}}} \frac{\cos (k x-\omega t)}{\cos [k(x-V t)]}
$$

If no dispersion: $\omega=V k$ (see Eq. 8, same V)

Group velocity

Moving Gaussian wave-packet without dispersion

2.3.5) Group velocity

Consider Gaussian wave-packet

$$
f(x) \sim \int_{-\infty}^{\infty} d k e^{-\frac{\left(k-k_{0}\right)^{2}}{2 \sigma_{k}^{2}}} \cos (k x)
$$

Now lets make waves moving

$$
f(x, t) \sim \int_{-\infty}^{\infty} d k e^{-\frac{\left(k-k_{0}\right)^{2}}{2 \sigma_{k}^{2}}} \cos [k(x-\underline{V(k) t)}]
$$

If dispersion: Different velocities $V(k)$ for different " k " parts of wavepacket

Group velocity

Moving Gaussian wave-packet

see more animations here:
https://blog.soton.ac.uk/soundwaves/further-concepts/2-dispersive-waves/

Simpler example: Motion of beating waves

Go back to beating example

Assume two
 different waves

$$
\begin{aligned}
& y_{1}(x, t)=A \cos [(\omega-\Delta \omega / 2) t-(k-\Delta k / 2) x] \\
& y_{2}(x, t)=A \cos [(\omega+\Delta \omega / 2) t-(k+\Delta k / 2) x]
\end{aligned}
$$

second has only slightly different ω and k .

Motion of beating waves

Add them as in section 2.3.1.)

$$
\begin{align*}
y(x, t) & =y_{1}(x, t)+y_{2}(x, t) \\
& =2 A \cos \left(\frac{\Delta \omega}{2} t-\frac{\Delta k}{2} x\right) \cos (\omega t-k x) \tag{53}
\end{align*}
$$

Moving Envelope: Moving Carrier:

- See book for details.

Movie: Motion of beating waves

Motion of beating waves
$y=\frac{2 A \cos \left(\frac{\Delta \omega}{2} t-\frac{\Delta k}{2} x\right)}{\text { Moving Envelope: }} \frac{\cos (\omega t-k x)}{\text { Moving Carrier: }}$
Using Eq. (8) we infer for motion of envelope

$$
\begin{array}{ll}
\text { Group velocity } \\
\qquad \begin{aligned}
v_{g}=\frac{\Delta \omega}{\Delta k} & \text { (Two waves) } \\
v_{g}=\frac{d \omega}{d k} & \text { (Many waves }
\end{aligned}
\end{array}
$$

Movie: Gaussian moving wavepacket

