
10Week PHY 106 Quantum Physics 
Instructor: Sebastian Wüster, IISER Bhopal, 2020   

These notes are provided for the students of the class above only. 
There is no warranty for correctness, please contact me if you spot a mistake.  

3.4) Quantum Hydrogen atom 
We have seen that a rigorous equation for the 
quantum behaviour of particles (their wave-
function) is given by Schrödinger’s equation (SE).

We had required a “better atomic theory” than Bohr’s 
model at the end of “week 7”.

This can now be provided by quantum mechanics, 
based on the SE.



3.4.1) Schrödinger’s equation for Hydrogen 

Let us apply QM to the simplest atom: Hydrogen

Problem: 3D, can no longer use simple 1D eqns.

Recall Eq. (87), 3D SE.  Now we need time-indep. version

EnΨ(x, y, z) = −
ℏ2

2m ( ∂2

∂x2
+

∂2

∂y2
+

∂2

∂z2 ) + U(x, y, z) Ψ(x, y, z)

Assume proton infinitely heavy, only electron moving.

m = me



Schrödinger’s equation for Hydrogen 

EnΨ(x, y, z) = −
ℏ2

2m ( ∂2
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Electrostatic potential from 
nucleus [see Eq. (67) for force]
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Proton at origin of co-ordinate system
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r = x2 + y2 + z2Uses distance from origin:

bad choice of co-ordinates

(118)

(118b)



Excursion/Reminder: Spherical polar coords. 
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r = x2 + y2 + z2We want one coordinate to be: (119)

Add to that, angle between z-
axis and vector r = [x,y,z]T θ = arccos ( z

r ) (120)

Finally, we need the angle 
between x axis and 
projection of r into x-y 
plane
ϕ = atan2(y, x) (121)

See wikipedia 
“Inverse_trigonometric_functions” for atan2 



TISE for the 3D Hydrogen atom
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(122)

Schrödinger’s equation for Hydrogen 

We can rewrite the SE in spherical polar coordinates.

Difficult conversion of derivatives (advanced math)

Wave function in polar 
coordinates

Coulomb  
potential



3.4.2) Product wave function 

Eq. (122) seems much harder than Eq. (118)

: Function that only depends on co-ordinate r

Θ(θ)

Φ(ϕ)

R(r)
: Function that only depends on co-ordinate

: Function that only depends on co-ordinate
θ
ϕ

However, polar coordinates allow 

Product Ansatz
Ψ = Ψ(r, θ, ϕ) = R(r)Θ(θ)Φ(ϕ) (123)



Product wave function 
This in turn, allows “separation of variables”:

Schematically:
1.  Start with Eq. (122), insert (123)

2.  Can write this as
some function

f(r, θ) = g(ϕ)
some other function

equation supposedly true for ANY value of r,theta,phi!!!

3.  This means they have 
to be equal to a constant f(r, θ) = const . = g(ϕ)

equation for phi

4.  Then again h(r) = const2 . = y(θ)
equation for r equation for theta(more see book)



Product wave function

(95)

Seperated equations for Hydrogen wavefunction

d2Φ
dϕ2

+ m2
l Φ = 0 (124)

(125)

(126)

lml E

1
sin θ

d
dθ (sin θ

dΘ
dθ ) + [l(l + 1) −

m2
l

sin2 θ ] Θ = 0

1
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d
dr (r2 dR
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2m
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4πϵ0r
+ E) −

l(l + 1)
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R = 0

Integers: Energy:

Ψ(r, θ, ϕ) = R(r)Θ(θ)Φ(ϕ)



Hydrogen atom quantum numbers

Principal quantum number  n = 1,2,3,…, ∞ (127)

3.4.3) Hydrogen wave functions 
As we have seen earlier [e.g. Eq. (115), harmonic 
oscillator], to get admissible solutions, quantum 
numbers may pop up

We skip the math of where they come 
from, but shall learn now what they 
mean….

Orbital quantum number l = 0,1,2,…, n − 1 (128)

Magnetic quantum number ml = 0, ± 1, ± 2,…, ± l (129)

from Eqn 126

from Eqn 125

from Eqn 124



Principal quantum number 

The principal quantum number is linked to the 
energy E in Eq. (126) via

Hydrogen 
electron energies En = −

me4

8ϵ2
0h2 ( 1

n2 ) (75)

= Bohr’s theory correctly predicts energies in the 
Schrödinger model (Eq. 124-126).

Here the principal quantum number arises, because 
mathematically, Eq. (126) does not have a useful 
solution for any other energies.



Excursion/reminder: Angular Momentum
To understand the other two quantum numbers, let us 
revise angular momentum:

Angular momentum

⃗L = ⃗r × ⃗p (130)

of particle with momentum p around origin

rotationstraight motion

conserved if no torque, 
e.g. only central force



It turns out orbital quantum number decides the
Orbital quantum number

Magnitude of angular momentum of the electron 
L = | ⃗L | = l(l + 1)ℏ (131)

•Thus angular momentum is also quantized, since l 
is an integer. 

•Note from Eq. (128), that the n=1 ground-state 
must have zero angular momentum.

•In atomic physics, we use letter code:
l = 0,    1,     2,     3,     4,     

s,     p,     d,     f,     g,     
e.g. n=3, l=2

=> 3d state



Finally the magnetic quantum number decides the
Magnetic quantum number

z-component of 
angular momentum of 
the electron 

Lz = ̂k ⋅ ⃗L = mlℏ (132)

•This determines the orientation 
of angular momentum

•Note other components Lx and 
Ly are completely unknown… 

(see two pages below)

L2 − L2
z



…the latter is required due to the uncertainty 
relation (64).

Uncertainties of angular momentum

Suppose we knew all three 
componts of the angular 
momentum vector, e.g.:

⃗L = [0,0,Lz]T

•In this case we know, 
motion must be in the 
x,y plane (see pic)

•Thus uncertainty in z-
direction Δz = 0

•From Eq. (64): infinite 
momentum uncertainty

…which can’t be
Δpz = ∞



This problem is fixed by keeping Lx,Ly uncertain 
and having 

Uncertainties of angular momentum

Lz < | ⃗L | •Think of uncertain Lx,Ly    
as       precessing 
(rotating) on the         line

⃗L

•“Matching” classical 
orbital motion (red) 
then has                         
as shown

Δz ≠ 0

again: We can never know all three components 
of an angular momentum precisely (133)



Hydrogen wave functions 
Let us finally take a look at how the electron wave 
functions in Hydrogen look like:
Ground-state: 1sorn = 1, l = 0, m = 0

3D: diffuse cloud. Never reaches 
zero. No orbit. Spherically 
symmetric.

1D cut on pink line

Ψ100(r, θ, ϕ) =
1

πa3/2
0

e−r/a0 a0= Bohr radius, Eq. (74b)
(134)

nlm



Hydrogen wave functions 

Rydberg-state: n = 50, l = 49, m = 49
(=very high excited state)

1D cut on pink line

3D: diffuse cloud, but 
this does look like orbit

Ψn,n−1,n−1(r, θ, ϕ) ∼ (sin[θ]eiϕ)m( r
a0

)n−1e− r
a0n (135)



Hydrogen wave functions 
Low excited states: n = 2, l = 0, m = 0 2sor

1D cut on pink line

x

Ψ200(r, θ, ϕ) = ∼ (2 −
r
a0 ) e−r/(2a0) (136)

3D: diffuse cloud, different 
signs, radial node!!

x

y

z



Hydrogen wave functions 
Low excited states: n = 2, l = 1, m = 0, ± 1 2p

Ψ21±1(r, θ, ϕ) = ∼
r
a0

e−r/(2a0) sin(θ)e±iϕ

Ψ210(r, θ, ϕ) = ∼
r
a0

e−r/(2a0) cos(θ)
(137)



Hydrogen wave functions 
Low excited states: n = 2, l = 1, m = 0, ± 1 2p

Ψ210 |Ψ211 ||Ψ21(−1) |

Ψ21±1(r, θ, ϕ) = ∼
r
a0

e−r/(2a0) sin(θ)e±iϕ

Ψ210(r, θ, ϕ) = ∼
r
a0

e−r/(2a0) cos(θ)
(137)



Hydrogen wave functions 
Summary:

•We can analytically solve the TISE for the 
Hydrogen atom, to find wave functions with three 
quantum numbers n,l,m, see Eq. 127-129.

•These describe energy and angular-momentum 
quantisation

•They are essential for understanding the periodic 
table (later ~week12) and for calculating 
probabilities for atomic processes…



More complex atoms 

•We had concluded section 3.1.8) with the statement 
that even though Bohr’s model gets the Hydrogen 
energies right, it fails for all heavier atoms.

•In contrast the TISE (118), is very successful also 
for those, if electron-electron interactions are taken 
into account.

•The latter however require highly sophisticated 
solution methods way beyond this course



Example: Use of Hydrogen wave functions 
•Schematic how to calculate a stimulated emission 
probability:

Atomic state  
at t=0:

2p

Atomic state 
at t=T

1s

Time-dependence 
from photon E-field

iℏ
∂
∂t

Ψ(x, t) = Ĥ(t)Ψ(x, t)



3.4.4) Magnetic fields 
The TISE (106) can treat atom in E or B field

electric magnetic

Hamiltonian (101) on the rhs= total energy, hence 
add interaction energy (operators) due to e.g. 
interaction of current (due to electron) with 
magnetic field

Let us assume magnetic 
field in z-direction:

⃗B = B0
̂k (138)

There is a magnetic moment associated with angular 
momentum, that experiences an energy shift in a field

ang. mom. ↔ motion ↔ currentloop ↔ energy in field



Magnetic fields 
Electron angular 
momentum

“Circular” motion of 
electron

Electron is charged, this is 
a current loop!!

Current loop gains energy 
in magnetic field

L



Magnetic fields 

From the calculation we find the
Normal Zeeman effect: energy shift of Hydrogen  
atom in external magnetic field Eq. (138)  

ΔEmag = μBB0ml
(139)

μB =
eℏ
2me

= 9.274 × 10−24 J/T is called Bohr magneton

ang. mom. ↔ motion ↔ 
currentloop ↔ energy in field



Magnetic fields 

Suppose red line comes from the transition below

n

n+1

E

m=0
m=1

m=-1



Magnetic fields 
splitting small vs energy for typical fields, but if 
zoom into line…

n

n+1

E

ΔEmag

ΔEmag m=0
m=1

m=-1



But we see one

3.5) (Electron) spin 
Eq. (139) predict no shift for e.g. Hydrogen ground-
state n=1, l=0, ml=0

even worse: lines are split even without field
it turns out

Electron (and most other particles) have an 
intrinsic angular momentum called spin

•First idea was “rotation about its axis”, 
see drawing:

•Not true: Since size of electron so tiny, 
surface would need v>>c



 (Electron) spin 

Electron (and most other particles) have an 
intrinsic angular momentum called spin

•Still frequently helps to (carefully) have 
“rotation about its axis” in mind.

•Better though is to think of spin as turning the 
electron into a “tiny magnet” since there is a 
magnetic moment associated with spin. 

N

S



 (Electron) spin 

Electron has an intrinsic angular momentum 
called spin

•These have the same meaning as l and ml for 
orbital (the other) angular momentum

•Electron spin is quantized with quantum 
numbers 

s =
1
2

ms = −
1
2

,
1
2

(140)

•Spin comes attached with a magnetic moment



Spin 
Turns out most other fundamental (and composite) 
particles also have spin. Spin is fundamentally 
required to construct relativistic quantum physics
We classify particles (also compound ones like 
atoms) as follows
Particles with half-integer spin are called Fermions

s =
1
2

,
3
2

,
5
2

, … Examples: electron, quark, proton, 
atoms with odd number of neutrons 

Particles with integer spin are called Bosons
s = 0,1,2,… Examples: photon, gluon,W-Boson, 

atoms with even number of neutrons 
•We see next (week 11) why this is important

(141)


