

PHY 106 Quantum Physics Instructor: Sebastian Wüster, IISER Bhopal, 2020

These notes are provided for the students of the class above only. There is no warranty for correctness, please contact me if you spot a mistake.

3.4) Quantum Hydrogen atom

We have seen that a rigorous equation for the **quantum** behaviour of particles (their wave-function) is given by Schrödinger's equation (SE).

We had required a "better atomic theory" than Bohr's model at the end of "week 7".

This can now be provided by **quantum mechanics**, based on the SE.

3.4.1) Schrödinger's equation for Hydrogen

Let us apply QM to the simplest atom: Hydrogen Problem: 3D, can no longer use simple 1D eqns.

Recall Eq. (87), 3D SE. Now we need time-indep. version $E_n \Psi(x, y, z) = \left(-\frac{\hbar^2}{2m} \left(\frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2} + \frac{\partial^2}{\partial z^2} \right) + U(x, y, z) \right) \Psi(x, y, z)$

Assume proton infinitely heavy, only electron moving.

 $m = m_e$

Schrödinger's equation for Hydrogen $E_n\Psi(x, y, z) = \left(-\frac{\hbar^2}{2m}\left(\frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2} + \frac{\partial^2}{\partial z^2}\right) + U(x, y, z)\right)\Psi(x, y, z)$ (118)

Proton at origin of co-ordinate system

x,y,z electron position

Electrostatic potential from nucleus [see Eq. (67) for **force**]

$$U(x, y, z) = -\frac{1}{4\pi\epsilon_0} \frac{e^2}{r}$$
 (118b)

Uses distance from origin: $r = \sqrt{x^2 + y^2 + z^2}$

Excursion/Reminder: Spherical polar coords.

We want one coordinate to be: $r = \sqrt{x^2 + y^2 + z^2}$ (119)

Add to that, angle between zaxis and vector $\mathbf{r} = [x,y,z]^T$ $\theta = \arccos\left(\frac{z}{r}\right)$ (120)

Finally, we need the angle between x axis and **projection** of **r** into x-y plane

 $\phi = atan2(y, x)$ (121)

See wikipedia "Inverse_trigonometric_functions" for atan2

Schrödinger's equation for Hydrogen

We can rewrite the SE in spherical polar coordinates.

Difficult conversion of derivatives (advanced math)

3.4.2) Product wave function

Eq. (122) seems much harder than Eq. (118)

However, polar coordinates allow

Product Ansatz

$$\Psi = \Psi(r, \theta, \phi) = R(r)\Theta(\theta)\Phi(\phi)$$
 (123)

R(r): Function that only depends on co-ordinate r $\Theta(\theta)$: Function that only depends on co-ordinate θ $\Phi(\phi)$: Function that only depends on co-ordinate ϕ

Product wave function

This in turn, allows "separation of variables":

Schematically:

- 1. Start with Eq. (122), insert (123)
- 2. Can write this as $f(r, \theta) = g(\phi)$ some function some other function equation supposedly true for ANY value of r,theta,phi!!!
- 3. This means they have to be equal to a constant

$$f(r,\theta) = const. = g(\phi)$$

equation for phi

4. Then again *(more see book)*

$$h(r) = const_2 = y(\theta)$$

equation for r equation for theta

Product wave function

$$\Psi(r,\theta,\phi) = R(r)\Theta(\theta)\Phi(\phi)$$

Seperated equations for Hydrogen wavefunction

$$\frac{d^2\Phi}{d\phi^2} + m_l^2\Phi = 0$$
 (124)

$$\frac{1}{\sin\theta} \frac{d}{d\theta} \left(\sin\theta \frac{d\Theta}{d\theta} \right) + \left[l(l+1) - \frac{m_l^2}{\sin^2\theta} \right] \Theta = 0 \quad (125)$$

$$\frac{1}{r^2} \frac{d}{dr} \left(r^2 \frac{dR}{dr} \right) + \left[\frac{2m}{\hbar^2} \left(\frac{e^2}{4\pi\epsilon_0 r} + E \right) - \frac{l(l+1)}{r^2} \right] R = 0 \quad (126)$$

Integers: m_l *l* Energy: *E*

3.4.3) Hydrogen wave functions

As we have seen earlier [e.g. Eq. (115), harmonic oscillator], to get admissible solutions, **quantum numbers** may pop up

Hydrogen atom **quantum numbers** from Eqn 126 **Principal** quantum number $n = 1, 2, 3, ..., \infty$ (127) from Eqn 125 **Orbital** quantum number l = 0, 1, 2, ..., n - 1 (128) from Eqn 124 **Magnetic** quantum number $m_l = 0, \pm 1, \pm 2, ..., \pm l$ (129)

> We skip the math of where they come from, but shall learn now what they mean....

Principal quantum number

The principal quantum number is linked to the energy E in Eq. (126) via

Hydrogen	$E_n = -$	me^4	$\begin{pmatrix} 1 \end{pmatrix}$	(75)
electron energies		$8\epsilon_0^2h^2$	$\left(\frac{1}{n^2}\right)$	

= Bohr's theory correctly predicts energies in the Schrödinger model (Eq. 124-126).

Here the principal quantum number arises, because mathematically, Eq. (126) does not have a useful solution for any other energies. **Excursion/reminder: Angular Momentum**

To understand the other two quantum numbers, let us revise angular momentum:

Orbital quantum number

It turns out orbital quantum number decides the

Magnitude of angular momentum of the electron $L = |\vec{L}| = \sqrt{l(l+1)}\hbar$ (131)

- Thus angular momentum is also quantized, since 1 is an integer.
- •Note from Eq. (128), that the n=1 ground-state must have **zero** angular momentum.
- •In atomic physics, we use letter code:

$$= 0, 1, 2, 3, 4, e.g. n=3, l=2$$

s, p, d, f, g, $=> 3d$ state

Magnetic quantum number

Finally the magnetic quantum number decides the

z-component of angular momentum of the electron

$$L_z = \hat{k} \cdot \overrightarrow{L} = m_l \hbar$$
 (132)

- This determines the **orientation** of angular momentum
- •Note other components L_x and L_y are **completely unknown**... (see two pages below)

Uncertainties of angular momentum ...the latter is required due to the uncertainty relation (64).

Suppose we **knew all three** componts of the angular momentum vector, e.g.:

- •In this case we know, motion must be in the x,y plane (see pic)
- Thus uncertainty in zdirection $\Delta z = 0$
- •From Eq. (64): infinite momentum uncertainty $\Delta p_{z} = \infty$

...which can't be

Uncertainties of angular momentum

This problem is fixed by keeping L_x, L_y uncertain and having $L_z < |\vec{L}|$ • Think of uncertain

• Think of uncertain L_x, L_y as \overrightarrow{L} precessing (rotating) on the ---- line

> • "Matching" classical orbital motion (red) then has $\Delta_z \neq 0$ as shown

again: We can never know all three componentsof an angular momentum precisely(133)

Hydrogen wave functions

Let us finally take a look at how the electron wave functions in Hydrogen look like:

Ground-state:
$$n = 1, l = 0, m = 0$$
 or $1s$
 $\Psi_{100}(r, \theta, \phi) = \frac{1}{\sqrt{\pi}a_0^{3/2}}e^{-r/a_0}$ a₀= Bohr radius, Eq. (74b)

JTT (

1D cut on pink line ×

3D: diffuse cloud. Never reaches zero. No orbit. Spherically symmetric.

Hydrogen wave functions

Hydrogen wave functions Low excited states: n = 2, l = 0, m = 0 or 2S

$$\Psi_{200}(r,\theta,\phi) = \sim \left(2 - \frac{r}{a_0}\right) e^{-r/(2a_0)}$$
 (136)

V

3D: **diffuse cloud**, different signs, radial node!!

Hydrogen wave functions Low excited states: $n = 2, l = 1, m = 0, \pm 1$ (2p) $\Psi_{210}(r,\theta,\phi) = \sim \frac{r}{a_0} e^{-r/(2a_0)} \cos(\theta)$ $\Psi_{21\pm 1}(r,\theta,\phi) = \sim \frac{r}{a_0} e^{-r/(2a_0)} \sin(\theta) e^{\pm i\phi}$ (137) 1 21

Hydrogen wave functions

Summary:

- •We can analytically solve the TISE for the Hydrogen atom, to find wave functions with three **quantum numbers** n,l,m, see Eq. 127-129.
- •These describe **energy** and **angular-momentum** quantisation
- They are essential for understanding the periodic table (later ~week12) and for calculating probabilities for atomic processes...

More complex atoms

- •We had concluded section 3.1.8) with the statement that even though Bohr's model gets the Hydrogen energies right, it fails for all heavier atoms.
- In contrast the TISE (118), is very successful also for those, if electron-electron interactions are taken into account.
- The latter however require highly sophisticated solution methods way beyond this course

Example: Use of Hydrogen wave functions

• Schematic how to calculate a stimulated emission probability:

3.4.4) Magnetic fields

The TISE (106) can treat atom in **E** or **B** field

Hamiltonian (101) on the rhs= total energy, hence add **interaction energy** (operators) due to e.g. interaction of **current** (due to electron) with **magnetic field**

Let us assume magnetic $\overrightarrow{B} = B_0 \hat{k}$ (138) field in z-direction:

There is a magnetic moment associated with angular momentum, that experiences an energy shift in a field

ang. mom. \leftrightarrow motion \leftrightarrow currentloop \leftrightarrow energy in field

Electron angular momentum

"Circular" motion of electron

Electron is charged, this is a current loop!!

Current loop gains energy in magnetic field

ang. mom. \leftrightarrow motion \leftrightarrow currentloop \leftrightarrow energy in field

From the calculation we find the

Normal Zeeman effect: energy shift of Hydrogen atom in external magnetic field Eq. (138)

$$\Delta E_{mag} = \mu_B B_0 m_l$$

(139)

 $\mu_B = \frac{e\hbar}{2m_e} = 9.274 \times 10^{-24} \text{ J/T}$ is called **Bohr magneton**

Suppose red line comes from the transition below

splitting small vs energy for typical fields, but if zoom into line...

3.5) (Electron) spin

Eq. (139) predict **no shift** for e.g. Hydrogen groundstate n=1, l=0, $m_l=0$ **But we see one**

even worse: lines are split even **without** field it turns out

Electron (and most other particles) have an **intrinsic angular momentum** called **spin**

- •First idea was "rotation about its axis", see drawing:
- •Not true: Since size of electron so tiny, surface would need v>>c

(Electron) spin

Electron (and most other particles) have an **intrinsic angular momentum** called **spin**

• Still frequently helps to (carefully) have "rotation about its axis" in mind.

•Better though is to think of spin as turning the electron into a "tiny magnet" since there is a **magnetic moment associated with spin**.

(Electron) spin

Electron has an **intrinsic angular momentum** called **spin**

•Electron spin is quantized with quantum numbers $s = \frac{1}{2}$ $m_s = -\frac{1}{2}, \frac{1}{2}$ (140)

- These have the same meaning as 1 and m₁ for **orbital** (the other) **angular momentum**
- Spin comes attached with a magnetic moment

Spin

Turns out most other fundamental (and composite) particles also have spin. Spin is fundamentally required to construct **relativistic quantum physics**

We classify particles (also compound ones like atoms) as follows

Particles with half-integer spin are called **Fermions** $s = \frac{1}{2}, \frac{3}{2}, \frac{5}{2}, ...$ *Examples: electron, quark, proton, atoms with odd number of neutrons* Particles with integer spin are called **Bosons** (141) s = 0,1,2,... *Examples: photon, gluon, W-Boson, atoms with even number of neutrons*

•We see next (week 11) why this is important