PHY 304, II-Semester 2023/24, Tutorial 8

19. April. 2024

Work in the same teams as for assignments. Do "Stages" in the order below.
Discuss on your table in AIR. When all on your table finished a stage, make sure all students at your table understand the solution and agree on one by using the board.

Stage 1 Time evolution pictures: For week 10 we need to revise QM-1, section 3.9, on different pictures of time-evolution. Remind yourself of those. We will first consider the example of a quantum harmonic oscillator, for which we can write the Hamiltonian as

$$
\begin{equation*}
\hat{H}=\hbar \omega\left(\hat{a}^{\dagger} \hat{a}+\frac{1}{2}\right) \tag{1}
\end{equation*}
$$

in terms of ladderoperators for which $\hat{a}^{\dagger}\left|\varphi_{n}\right\rangle=\sqrt{n+1}\left|\varphi_{n+1}\right\rangle, \hat{a}\left|\varphi_{n}\right\rangle=$ $\sqrt{n}\left|\varphi_{n-1}\right\rangle$ and $\left[\hat{a}, \hat{a}^{\dagger}\right]=1$ holds. (we had called these $\hat{\bar{a}}_{ \pm}$in example 20 of Qm-I).
(i) Consider the initial state $|\Psi(t=0)\rangle=\left(\left|\varphi_{0}\right\rangle+\left|\varphi_{1}\right\rangle\right) / \sqrt{2}$. Write the time evolving state $|\Psi(t)\rangle$ in the Schrödinger picture and from that calculate the expectation value $\langle\hat{x}\rangle(t)$ using $\hat{x}=\left(\hat{a}^{\dagger}+\hat{a}\right) \sqrt{\hbar /(2 m \omega)}$.
(ii) Now, find the time-evolution equation for the operator $\hat{a}(t)$ in the Heisenberg picture. Solve it, and then calculate $\langle\hat{x}\rangle(t)$ again in the Heisenberg picture (remember here quantum states are time-independent, so $|\Psi\rangle=\left(\left|\varphi_{0}\right\rangle+\left|\varphi_{1}\right\rangle\right) / \sqrt{2}$ is the "eternal" state.
(iii) Now let's change the quantum system to a spin- $1 / 2$ with Hamiltonian

$$
\begin{equation*}
\hat{H}=\frac{\hbar \Omega}{2} \hat{\sigma}_{x} . \tag{2}
\end{equation*}
$$

Show that the time evolution operator is

$$
\hat{U}(t)=\left[\begin{array}{cc}
\cos (\Omega t / 2) & -i \sin (\Omega t / 2) \tag{3}\\
-i \sin (\Omega t / 2) & \cos (\Omega t / 2)
\end{array}\right]
$$

Hint: Note that $\hat{\sigma}_{x}^{2}=\mathbb{1}, \hat{\sigma}_{x}^{3}=\hat{\sigma}_{x}, \hat{\sigma}_{x}^{4}=\mathbb{1}$ etc. Use the power series for exp, sin, \cos and then plug it all together.
(iv) From that, find the time evolving state from initial state $|\Psi(t=0)\rangle=|\downarrow\rangle$ in the Schrödinger picture and compare the probability p_{\uparrow} to be in $|\uparrow\rangle$ with section 9.3.5.
(v) Bonus: To see this in the Heisenberg picture we define the projector $\hat{P}_{\uparrow}=$ $|\uparrow\rangle\langle\uparrow|$ so that $p_{\uparrow}=\left\langle\hat{P}_{\uparrow}\right\rangle$. Then find $\left\langle\hat{P}_{\uparrow}(t)\right\rangle$, with $\hat{P}(t)=\hat{U}^{\dagger}(t) \hat{P}_{\uparrow} \hat{U}(t)$.

Stage 2 Interaction picture Consider the time dependent two level system (spin-1/2) that we had looked at in example 71 with Hamiltonian in matrix form

$$
\underline{\underline{H}}=\underbrace{\left(\begin{array}{ll}
0 & 0 \tag{4}\\
0 & \Delta
\end{array}\right)}_{=\hat{H}^{(0)}}+\underbrace{\left(\begin{array}{cc}
0 & \kappa(t) \\
\kappa(t) & 0
\end{array}\right)}_{=\hat{H}^{\prime}(t)} .
$$

with the same $\kappa(t)$ as used there.
(i) Find the time evolution of the operator $\hat{S}_{x}=\hbar(|\uparrow\rangle\langle\downarrow|+|\downarrow\rangle\langle\uparrow|)$ in the interaction picture.
(ii) Write the interaction picture state in the usual spin basis

$$
\begin{equation*}
\left|\Psi_{I}(t)\right\rangle=c_{I, \uparrow}(t)|\uparrow\rangle+c_{I, \downarrow}(t)|\downarrow\rangle \tag{5}
\end{equation*}
$$

and find the evolution equation for the time dependent coefficients
(iii) BONUS: Using both of the above, find the time evolution of the expectation value $\left\langle\hat{S}_{x}\right\rangle(t)$ in the interaction picture, starting from the initial state $|\Psi(t=0)\rangle=|\uparrow\rangle$ (might need mathematica).

Stage 3 Higher-order Time dependent perturbation theory

(i) How do we move to higher-order time dependent perturbation theory and what is the physical picture of the structure of quantum dynamics that it suggests to us?

