PHY 304, II-Semester 2023/24, Tutorial 8

19. April. 2024

Work in the same teams as for assignments. Do "Stages" in the order below.
Discuss on your table in AIR. When all on your table finished a stage, make sure all students at your table understand the solution and agree on one by using the board.

Stage 1 Time evolution pictures: For week 10 we need to revise QM-1, section 3.9, on different pictures of time-evolution. Remind yourself of those. We will first consider the example of a quantum harmonic oscillator, for which we can write the Hamiltonian as

$$
\begin{equation*}
\hat{H}=\hbar \omega\left(\hat{a}^{\dagger} \hat{a}+\frac{1}{2}\right) \tag{1}
\end{equation*}
$$

in terms of ladderoperators for which $\hat{a}^{\dagger}\left|\varphi_{n}\right\rangle=\sqrt{n+1}\left|\varphi_{n+1}\right\rangle, \hat{a}\left|\varphi_{n}\right\rangle=$ $\sqrt{n}\left|\varphi_{n-1}\right\rangle$ and $\left[\hat{a}, \hat{a}^{\dagger}\right]=1$ holds. (we had called these $\hat{\bar{a}}_{ \pm}$in example 20 of Qm-I).
(i) Consider the initial state $|\Psi(t=0)\rangle=\left(\left|\varphi_{0}\right\rangle+\left|\varphi_{1}\right\rangle\right) / \sqrt{2}$. Write the time evolving state $|\Psi(t)\rangle$ in the Schrödinger picture and from that calculate the expectation value $\langle\hat{x}\rangle(t)$ using $\hat{x}=\left(\hat{a}^{\dagger}+\hat{a}\right) \sqrt{\hbar /(2 m \omega)}$.
Solution: We know the Schrödinger picture state since QM-I week2, Eqn. (1.70), using that here we can write $|\Psi(t=0)\rangle=c_{0}(0)\left|\varphi_{0}\right\rangle+$ $\left.c_{1}(0)\left|\varphi_{1}\right\rangle\right)$, with $c_{0}(0)=c_{1}(0)=1 / \sqrt{2}$ hence

$$
\begin{equation*}
|\Psi(t)\rangle=\left(e^{-i E_{0} t / \hbar}\left|\varphi_{0}\right\rangle+e^{-i E_{1} t / \hbar}\left|\varphi_{1}\right\rangle\right) / \sqrt{2} \tag{2}
\end{equation*}
$$

we also know $E_{k}=\hbar \omega(k+1 / 2)$, which can be inserted above. Note that "Schrödinger picture" only means "the state is evolving, not the operators". It does not mean you have to use a time-evolution operator as in $|\Psi(t)\rangle=$ $e^{-\frac{i}{\hbar} \hat{H} t}|\Psi(0)\rangle$. However you can easily see that this is fully equivalent to Eqn. (1.70) which you know since long time. Let $|\Psi(0)\rangle=\sum_{n} c_{n}(0)\left|\phi_{n}\right\rangle$, where $\hat{H}\left|\phi_{n}\right\rangle=E_{n}\left|\phi_{n}\right\rangle$, then

$$
\begin{align*}
|\Psi(t)\rangle & =|\Psi(0)\rangle=\sum_{n} c_{n}(0) e^{-\frac{i}{\hbar} \hat{H} t}\left|\phi_{n}\right\rangle=\sum_{n} c_{n}(0)\left[\sum_{k=0}^{\infty} \frac{\left(-\frac{i}{\hbar} \hat{H} t\right)^{k}}{k!}\right]\left|\phi_{n}\right\rangle \\
& =\sum_{n} c_{n}(0)\left[\sum_{k=0}^{\infty} \frac{\left(-\frac{i}{\hbar} E_{n} t\right)^{k}}{k!}\right]\left|\phi_{n}\right\rangle=\sum_{n} c_{n}(0) e^{-\frac{i}{\hbar} E_{n} t}\left|\phi_{n}\right\rangle \tag{3}
\end{align*}
$$

which is Eqn. (1.70). We have first inserted the power series for \exp and then used $\hat{H}^{k}\left|\phi_{n}\right\rangle=\left(E_{n}\right)^{k}\left|\phi_{n}\right\rangle$ and then converted the power series back to an exp. In the future you do not need to do these steps anymore, you can directly tell that $e^{\hat{O}}|\phi\rangle=e^{o}|\phi\rangle$, if $|\phi\rangle$ is an eigenstate of \hat{O} with eigenvalue o.

Now to find

$$
\begin{align*}
\langle\hat{x}\rangle & =\sqrt{\frac{\hbar}{2 m \omega}}\left\langle\hat{a}^{\dagger}+\hat{a}\right\rangle \\
& =\frac{1}{2} \sqrt{\frac{\hbar}{2 m \omega}}\left(e^{i E_{0} t / \hbar}\left\langle\varphi_{0}\right|+e^{i E_{1} t / \hbar}\left\langle\varphi_{1}\right|\right)\left(\hat{a}^{\dagger}+\hat{a}\right)\left(e^{-i E_{0} t / \hbar}\left|\varphi_{0}\right\rangle+e^{-i E_{1} t / \hbar}\left|\varphi_{1}\right\rangle\right) \\
& =\frac{1}{2} \sqrt{\frac{\hbar}{2 m \omega}}\left(e^{i\left(E_{1}-E_{0}\right) t / \hbar}\left\langle\varphi_{1}\right| \hat{a}^{\dagger}\left|\varphi_{0}\right\rangle+e^{i\left(E_{0}-E_{1}\right) t / \hbar}\left\langle\varphi_{0}\right| \hat{a}\left|\varphi_{1}\right\rangle\right) \\
& =\sqrt{\frac{\hbar}{2 m \omega}} \cos \left[\left(E_{1}-E_{0}\right) t / \hbar\right]=\sqrt{\frac{\hbar}{2 m \omega}} \cos [\omega t] . \tag{4}
\end{align*}
$$

In the third equality we have already discarded two terms which, after applying ladder operators, will be zero due to orthogonality of the state. In the last equality we used $E_{n}=\hbar \omega(n+1 / 2)$.
(ii) Now, find the time-evolution equation for the operator $\hat{a}(t)$ in the Heisenberg picture. Solve it, and then calculate $\langle\hat{x}\rangle(t)$ again in the Heisenberg picture (remember here quantum states are time-independent, so $|\Psi\rangle=\left(\left|\varphi_{0}\right\rangle+\left|\varphi_{1}\right\rangle\right) / \sqrt{2}$ is the "eternal" state.
Solution: To find the time-evolution of an operator in the Heisenberg picture, we either solve Heisenberg's equation (Eq. 3.69) or apply Eq. (3.66) [multiply from left and right with the time-evolution operator]. Here we can do the former:
$i \hbar \frac{d}{d t} \hat{a}_{H}(t)=\left[\hat{a}_{H}, \hat{H}_{H}\right] \stackrel{(i)}{=}[\hat{a}, \hat{H}]=\hbar \omega\left[\hat{a}, \hat{a}^{\dagger} \hat{a}+1 / 2\right]=\hbar \omega \underbrace{\left[\hat{a}, \hat{a}^{\dagger}\right]}_{=1} \hat{a} \stackrel{(i i)}{=} \hbar \omega \hat{a}$.

Comments about some items above: (i) For commutators that are a number (rather than an operator), we can show that

$$
\begin{align*}
{\left[\hat{a}_{H}, \hat{H}_{H}\right] } & =\left[\hat{U}^{\dagger}(t) \hat{a}_{S} \hat{U}(t), \hat{U}^{\dagger}(t) \hat{H}_{S} \hat{U}(t)\right] \\
& =\hat{U}^{\dagger}(t) \hat{a}_{S} \underbrace{\hat{U}(t) \hat{U}^{\dagger}(t)}_{=1} \hat{H}_{S} \hat{U}(t)-\hat{U}^{\dagger}(t) \hat{H}_{S} \hat{U}(t) \hat{U}^{\dagger}(t) \hat{a}_{S} \hat{U}(t) \\
& =\hat{U}^{\dagger}(t)\left[\hat{a}_{S}, \hat{H}_{S}\right] \hat{U}(t) \tag{6}
\end{align*}
$$

(ii) We use $\left[\hat{a}, \hat{a}^{\dagger}\right]=1$, which you can show from Eq. (2.45), taking into account the slightly different definition of ladder operators (see example 20). The \hat{a}, \hat{a}^{\dagger} here are called $\hat{\bar{a}}_{ \pm}$in that example. From now on, forget the earlier ones, always work with operators from this tutorial and their commutation relation.
We can easily solve (??) to give $\hat{a}_{H}(t)=\hat{a}(0) e^{-i \omega t}$. In this we have first ignored the fact that \hat{a} is an operator and solved the ODE as we usually
would, but then we can convince ourselves that it also holds for operators, since we can take matrix elements $\langle n| \cdots|m\rangle$ with any states $|n\rangle,|m\rangle$ on both sides and find the equation to be correct.
Calculating again the expectation value of position, but this time in the Heisenberg picture:

$$
\begin{align*}
\langle\hat{x}\rangle & =\sqrt{\frac{\hbar}{2 m \omega}}\left\langle\hat{a}(t)^{\dagger}+\hat{a}(t)\right\rangle \\
& =\frac{1}{2} \sqrt{\frac{\hbar}{2 m \omega}}\left(\left\langle\varphi_{0}\right|+\left\langle\varphi_{1}\right|\right)\left(\hat{a}^{\dagger}(t)+\hat{a}(t)\right)\left(\left|\varphi_{0}\right\rangle+\left|\varphi_{1}\right\rangle\right) \\
& =\frac{1}{2} \sqrt{\frac{\hbar}{2 m \omega}}\left(\left\langle\varphi_{0}\right|+\left\langle\varphi_{1}\right|\right)\left(\hat{a}^{\dagger}(0) e^{-i \omega t}+\hat{a}(0) e^{i \omega t}\right)\left(\left|\varphi_{0}\right\rangle+\left|\varphi_{1}\right\rangle\right) \\
& =\frac{1}{2} \sqrt{\frac{\hbar}{2 m \omega}}\left(\left\langle\varphi_{0}\right| \hat{a}(0)\left|\varphi_{1}\right\rangle e^{i \omega t}+\left\langle\varphi_{1}\right| \hat{a}^{\dagger}(0)\left|\varphi_{0}\right\rangle e^{-i \omega t}\right) \\
& =\sqrt{\frac{\hbar}{2 m \omega}} \cos [\omega t] \tag{7}
\end{align*}
$$

as we had seen before: Warning: Since in the Heisenberg picture states do not evolve, and only at $t=0$ co-incide with the Schrödinger picture state, you can only know how to apply ladder operators at $t=0$ onto states. I.e. $\hat{a}(0)\left|\varphi_{1}\right\rangle=\left|\varphi_{0}\right\rangle$ but $\hat{a}(t)\left|\varphi_{1}\right\rangle=$??? for $t>0$.
(iii) Now let's change the quantum system to a spin- $1 / 2$ with Hamiltonian

$$
\begin{equation*}
\hat{H}=\frac{\hbar \Omega}{2} \hat{\sigma}_{x} . \tag{8}
\end{equation*}
$$

Show that the time evolution operator is

$$
\hat{U}(t)=\left[\begin{array}{cc}
\cos (\Omega t / 2) & -i \sin (\Omega t / 2) \tag{9}\\
-i \sin (\Omega t / 2) & \cos (\Omega t / 2)
\end{array}\right]
$$

Hint: Note that $\hat{\sigma}_{x}^{2}=\mathbb{1}, \hat{\sigma}_{x}^{3}=\hat{\sigma}_{x}, \hat{\sigma}_{x}^{4}=\mathbb{1}$ etc. Use the power series for exp, sin, cos and then plug it all together.
Solution: These power series are $\exp (x)=\sum_{k=0}^{\infty} x^{k} / k!, \sin (x)=$ $\sum_{k=0}^{\infty}(-1)^{k} x^{2 k+1} /(2 k+1)!, \cos (x)=\sum_{k=0}^{\infty}(-1)^{k} x^{2 k} /(2 k)!$. We the start with

$$
\begin{align*}
\hat{U}(t) & =e^{-\frac{i}{\hbar} \hat{H} t}=\sum_{k=0}^{\infty} \frac{\left(-\frac{i}{\hbar} t\right)^{k} \hat{H}^{k}}{k!}=\sum_{k=0}^{\infty} \frac{\left(-\frac{i \Omega}{2} t\right)^{k} \hat{\sigma}_{x}^{k}}{k!} \\
& h \stackrel{i n t}{=} \sum_{k=0}^{\infty} \underbrace{(-i)^{2 k}}_{=(-1)^{k}} \frac{\left(\frac{\Omega}{2} t\right)^{2 k}}{(2 k)!} \underbrace{\hat{\sigma}_{x}^{2 k}}_{=1}+\sum_{k=0}^{\infty} \underbrace{(-i)^{2 k+1}}_{=(-i)(-1)^{k}} \frac{\left(\frac{\Omega}{2} t\right)^{2 k+1}}{(2 k+1)!} \underbrace{\hat{\sigma}_{x}^{2 k+1}}_{=\hat{\sigma}_{x}} \\
& =\cos (\Omega t / 2) \mathbb{1}-i \sin (\Omega t / 2) \hat{\sigma}_{x}, \tag{10}
\end{align*}
$$

which has the matrix representation (??), as we wanted to show.
(iv) From that, find the time evolving state from initial state $|\Psi(t=0)\rangle=|\downarrow\rangle$ in the Schrödinger picture and compare the probability p_{\uparrow} to be in $|\uparrow\rangle$ with section 9.3.5.
Solution: We apply the time-evolution operator to the initial state

$$
\hat{U}(t)|\Psi(t=0)\rangle=\left[\begin{array}{cc}
\cos (\Omega t / 2) & -i \sin (\Omega t / 2) \tag{11}\\
-i \sin (\Omega t / 2) & \cos (\Omega t / 2)
\end{array}\right]\left[\begin{array}{l}
0 \\
1
\end{array}\right]=\left[\begin{array}{c}
-i \sin (\Omega t / 2) \\
\cos (\Omega t / 2)
\end{array}\right]
$$

The probability p_{\uparrow} is found from the mod-square of the first component as $p_{\uparrow}=\sin ^{2}(\Omega t / 2)$, as in Eq. (9.53) for $\Delta=0$ and hence $\Omega_{\text {eff }}=\Omega$.
(v) Bonus: To see this in the Heisenberg picture we define the projector $\hat{P}_{\uparrow}=$ $|\uparrow\rangle\langle\uparrow|$ so that $p_{\uparrow}=\left\langle\hat{P}_{\uparrow}\right\rangle$. Then find $\left\langle\hat{P}_{\uparrow}(t)\right\rangle$, with $\hat{P}(t)=\hat{U}^{\dagger}(t) \hat{P}_{\uparrow} \hat{U}(t)$. Solution: We already know the time-evolution operator from (??), hence we can use Eq. (3.67):

$$
\begin{align*}
\hat{P}_{\uparrow, H}(t) & =\hat{U}^{\dagger}(t) \hat{P}_{\uparrow}(0) \hat{U}(t)=\left[\begin{array}{cc}
\cos (\Omega t / 2) & i \sin (\Omega t / 2) \\
i \sin (\Omega t / 2) & \cos (\Omega t / 2)
\end{array}\right]\left[\begin{array}{ll}
1 & 0 \\
0 & 0
\end{array}\right]\left[\begin{array}{cc}
\cos (\Omega t / 2) & -i \sin (\Omega t / 2) \\
-i \sin (\Omega t / 2) & \cos (\Omega t / 2)
\end{array}\right] \\
& =\left[\begin{array}{cc}
\cos (\Omega t / 2) & i \sin (\Omega t / 2) \\
i \sin (\Omega t / 2) & \cos (\Omega t / 2)
\end{array}\right]\left[\begin{array}{cc}
\cos (\Omega t / 2) & -i \sin (\Omega t / 2) \\
0 & 0
\end{array}\right] \\
& =\left[\begin{array}{cc}
\cos ^{2}(\Omega t / 2) & -i \cos (\Omega t / 2) \sin (\Omega t / 2) \\
i \cos (\Omega t / 2) \sin (\Omega t / 2) & \sin ^{2}(\Omega t / 2)
\end{array}\right] \tag{12}
\end{align*}
$$

Taking the expectation value in the (eternal, time-independent) state $|\downarrow\rangle$ gives us $\sin ^{2}(\Omega t / 2)$ as before!

Stage 2 Interaction picture Consider the time dependent two level system (spin-1/2) that we had looked at in example 71 with Hamiltonian in matrix form

$$
\underline{\underline{H}}=\underbrace{\left(\begin{array}{cc}
0 & 0 \tag{13}\\
0 & \Delta
\end{array}\right)}_{=\hat{H}^{(0)}}+\underbrace{\left(\begin{array}{cc}
0 & \kappa(t) \\
\kappa(t) & 0
\end{array}\right)}_{=\hat{H}^{\prime}(t)} .
$$

with the same $\kappa(t)$ as used there.
(i) Find the time evolution of the operator $\hat{S}_{x}=\hbar(|\uparrow\rangle\langle\downarrow|+|\downarrow\rangle\langle\uparrow|)$ in the interaction picture.
Solution: We require the free time evolution operator from Eq. (9.62) [setting $t_{0}=0$ for simplicity]

$$
\hat{U}^{(0)}(t)=e^{-\frac{i}{\hbar} \hat{H}^{(0)} t}=\left(\begin{array}{cc}
1 & 0 \tag{14}\\
0 & e^{-\frac{i \Delta}{\hbar} t}
\end{array}\right)
$$

The reason why it is always easy to read of the operator-exponential for a diagonal operator is the same as discussed around Eq. (??). Now we can form

$$
\begin{align*}
\hat{S}_{x}(t) & =\hat{U}^{(0) \dagger}(t) \hat{S}_{x} \hat{U}^{(0)}(t)=\hbar\left(\begin{array}{cc}
1 & 0 \\
0 & e^{\frac{i \Delta}{\hbar} t}
\end{array}\right)\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right)\left(\begin{array}{cc}
1 & 0 \\
0 & e^{-\frac{i \Delta}{\hbar} t}
\end{array}\right) \\
& =\hbar\left(\begin{array}{cc}
0 & e^{-\frac{i \Delta}{\hbar} t} \\
e^{\frac{i \Delta}{\hbar} t} & 0
\end{array}\right) . \tag{15}
\end{align*}
$$

(ii) Write the interaction picture state in the usual spin basis

$$
\begin{equation*}
\left|\Psi_{I}(t)\right\rangle=c_{I, \uparrow}(t)|\uparrow\rangle+c_{I, \downarrow}(t)|\downarrow\rangle, \tag{16}
\end{equation*}
$$

and find the evolution equation for the time dependent coefficients Solution: We know this state evolves according to Eq. (9.68) for which we require $\hat{H}_{I}^{\prime}(t)$, i.e. the interaction Hamiltonian from (??) but taken in the interaction picture:

$$
\begin{align*}
\hat{H}_{I}^{\prime} & =\hat{U}^{(0) \dagger}(t) \hat{H}^{\prime} \hat{U}^{(0)}(t)=\left(\begin{array}{cc}
1 & 0 \\
0 & e^{\frac{i \Delta}{\hbar} t}
\end{array}\right)\left(\begin{array}{cc}
0 & \kappa(t) \\
\kappa(t) & 0
\end{array}\right)\left(\begin{array}{cc}
1 & 0 \\
0 & e^{-\frac{i \Delta}{\hbar} t}
\end{array}\right) \\
& =\left(\begin{array}{cc}
0 & \kappa(t) e^{-\frac{i \Delta}{\hbar} t} \\
\kappa(t) e^{\frac{i \Delta}{\hbar} t} & 0
\end{array}\right) . \tag{17}
\end{align*}
$$

Insertion into $i \hbar \frac{d}{d t}\left|\Psi_{I}(t)\right\rangle=\hat{H}_{I}^{\prime}(t)\left|\Psi_{I}(t)\right\rangle$ and subsequent projection onto $\langle\uparrow|$ and $\langle\downarrow|$ gives:

$$
\begin{align*}
& \dot{c}_{I, \uparrow}(t)=\kappa(t) e^{-\frac{i \Delta}{\hbar} t} c_{I, \downarrow}(t), \\
& \dot{c}_{I, \downarrow}(t)=\kappa(t) e^{\frac{i \Delta}{\hbar} t} c_{I, \uparrow}(t) . \tag{18}
\end{align*}
$$

(iii) BONUS: Using both of the above, find the time evolution of the expectation value $\left\langle\hat{S}_{x}\right\rangle(t)$ in the interaction picture, starting from the initial state $|\Psi(t=0)\rangle=|\uparrow\rangle$ (might need mathematica).
Solution: To be provided later

Stage 3 Higher-order Time dependent perturbation theory

(i) How do we move to higher-order time dependent perturbation theory and what is the physical picture of the structure of quantum dynamics that it suggests to us?
Solution: See week 10 lecture notes.

