
PHY 304, II-Semester 2023/24, Tutorial 7 solution

Stage 1 Time dependent perturbation theory

(i) Discuss what is the mission objective of time-dependent perturbation
theory. When do we need it? What are alternatives to it?
Solution: It typically seeks to find a simple (approximate) answer to
the question “what is the probability make a transition into some final
state | f ⟩, starting from some initial state | i ⟩?”. We need it when the
complete Hamiltonian Ĥ = Ĥ(0)+ Ĥ ′(t) is too complex to solve the TDSE.
Whenever we can solve the TDSE on a computer we do not need per-
turbation theory, but it might still be nice to gain some analytical insights.

(ii) Revise the general formula for the transition from state | i ⟩ to state | f ⟩ in
first order time-dependent perturbation theory, and describe the key terms
in it and their interpretation.
Solution: See Eq. (9.10) in the lecture:
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The key-pieces are marked with · · ·︸︷︷︸
A/B

. A depends only on energy differences

between the two states and will thus have to contain information an how
energetically accessible the transition is. The matrix element B will
also contain some time dependence from Ĥ ′ (which helps decide if the
perturbation can “supply/substract the missing/excess energy”, but it
also encodes the operator structure of Ĥ ′. This often encodes whether
the perturbation has the right symmetry/shape to cause the transition in
question. We had seen examples of how this works in Assignment 5.

(iii) Discuss the special case for a periodic perturbation and what physical
requirements on the quantum state transition the different mathematical
terms encode.
Solution: For a periodic perturbation Ĥ ′(t) = V̂ cos(ωt) with frequency ω
we had further boiled down Eq. (1) into Eq. (9.24) of the lecture:
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Here we see all the statement from (ii) even more clearly: Vfi = ⟨ f |V̂ | i ⟩
decides if the perturbation contains “the right operator” to cause this
transition. For example for the particle in the box we had seen that a
spatially constant oscillating force can not cause direct transitions from
even symmetry states to even symmetry states. The term |ωfi − ω|2
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directly tells us that transitions where there is a large mismatch between
the energy associated with the perturbation (ℏω), and the transition energy
ℏωfi will be less likely.

Stage 2 Rabi oscillations: Discuss Rabi oscillations in section 9.3.5 on your table for
the resonant case (∆ = 0).

(i) Then run the app http://www.falstad.com/qmatomrad/ , which handles
transitions between electronic states of a Hydrogen atom coupled with a
periodically oscillating electric field in various choosable directions. The
Hamiltonian thus is:

Ĥ = Ĥhyd + eE0 · r̂ cos (ωt) (3)

with E0 = E0ex,y,z with the direction of E0 indicated in the app. The
app only considers resonant perturbations, such that ℏω = En − Em

for two Hydrogen states n and m. Discuss how features you see in
the animation relate to what you learnt about Rabi-oscillations, what
information decides which two Hydrogen states are involved, and why
only two become relevant in this app.
Solution: We can see how the electronic state changes completely from
the initial state to the final state. In between, we have a quantum
superposition of both, which causes the electron density to oscillate in
time, with a frequency equal to the transition frequency. We see that the
initial state, electric field direction and excitation frequency together decide
which two states are showing Rabi oscillations. The field direction enters
⟨ f |V̂ | i ⟩, see equation (9.43), (9.44), and in the perturbative regime the
frequency “selects” one of the states with non-vanishing ⟨ f |V̂ | i ⟩ since all
other-states will be “off-resonant” and thus not participate due to Eq. (2).

(ii) Bonus: Also discuss what behavior of the electron dipole ⟨ er̂ ⟩ corre-
sponds to the electron wavefunctions shown, and how this relates to the
emission of absorption of radiation (thinking about the latter in terms of
classical electromagnetism for now).
Solution: The oscillating charge density of the electron represents an
oscillating dipole, the frequency of which matches that of the radiation
field. We can think of this as either the dipole emitting radiation or
absorbing radiation, which it is depends on the relative phase between
dipole oscillation and field.

(iii) Bonus: You can also check out http://www.falstad.com/qm1drad/ ,
which handles dynamics of the particle in the box subject to a periodically
oscillating force along the x-direction, just as we had seen in QM-1
assignment5Q2 and are presently seeing in assignment 6 Q4 (see those for
the Hamiltonian). In contrast to the first app, it allows you to chose an
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arbitrary frequency ω and strength F0 for the perturbation. Play with
those and discuss what happens and understand why.
Solution: We can choose a very strong field such that we can see its effect
in the potential itself. In that case the particle wavefunction will get
strongly excited in many excited states and complicated dynamics ensues.
Here we are outside of the range of applicability of perturbation theory
[see stage 3(i)(c)]. For weaker perturbations, we generally see that just a
few of the excited state amplitudes (little rotating arrows at the bottom)
become relevant. Overall, this app would be nicer if one could control the
frequency in a way that one can hit a resonance on purpose.

Stage 3 Interaction of electro-magnetic waves with matter: Consider an arbitrary
quantum system for which we assume we know the unperturbed spectrum

Ĥ(0)|ϕn ⟩ = En|ϕn ⟩. (4)

The system contains particles that are affected by electro-magnetic fields, such
that the system is subject to a perturbing Hamiltonian

Ĥ ′(t) = V̂ cos (ωt) (5)

if a monochromatic electro-magnetic wave of frequency ω hits it. Consider ℏω to
be of the order of the En−Em. Note that this a very general setting throughout
physics, the states could describe eigen-energies of (nuclei/atoms/molecules) or
quasi-particle energies in materials (excitons/phonons/polarons etc.) and waves
can span the entire spectrum from gamma rays to radio. We assume the system
is in the ground-state |ϕ0 ⟩ initially.

Figure 1: (stage 3) Cartoon of a quantum system with discrete energies, interrogated by
monochromatic radiation.

(i) Initially assume all ⟨ϕm |V̂ |ϕn ⟩ = V0 ̸= 0. Consider the cases where
(a) ω is closer to Ek − E0 than to any other energy differences
but |ℏω − (Ek − E0)| ≫ V0, (b) ℏω = Ek − E0 for some k, and
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|ℏω − (En − E0)| ≫ V0 for all other n ̸= k and (c) V0 ≫ |ℏω − (En − E0)|
for a large number of n. In each case discuss qualitatively (or quantita-
tively if possible) what you expect to happen once the elm. wave hits the
system and how you can know this.
Solution: (a) [ℏω − (Ek − E0)] = ℏ∆ is called the detuning. Thanks to
[ℏω − (Ek − E0)] ≪ V0 we can hope to apply perturbation theory. Then
based on (2) we see that in this case we get the picture from page 222
or bottom page 232 (red line): This is called detuned Rabi-oscillations,
only a small probability of maximum pk = |V0/ℏ∆|2 is reached in
state | k ⟩, which oscillates as ∼ sin2(∆t/2). For all other states |m ⟩
|ℏω − (Em − E0)| = ℏ|∆m| will be way larger, so these can be neglected.
(b) In this case the perturbation is fully resonant with the | 0 ⟩ → | k ⟩
transition. We had seen in section 9.3.5 that in this case the population in
| k ⟩ will at some point reach 1 which necessarily invalidates perturbation
theory (since the time evolving perturbation of the state cannot be consid-
ered small compared to the initial state). We instead see coherent Rabi
oscillations as discussed in section 9.3.5 with Rabi frequency ℏΩ = V0.
Even in this case we can use perturbative arguments to justify why we only
needed to consider two states: For all other ones again ℏ∆m will be very
large, so we can neglect them. (c) If V0 ≫ |ℏω − (En − E0)| for a large
number of n neither perturbation theory nor a two-level picture will do us
much good. With similar arguments as above, we would have to consider
many levels and dynamics can be quite complicated. See app in Stage 2
(ii).

(ii) Typically the ⟨ϕm |V̂ |ϕn ⟩ will not be all equal. Discuss what information
they contain and through which principles you can often infer which ones
are non-zero.
Solution: Content see Stage 1. Principles: Symmetry and conservation
laws.

(iii) Bonus: While the discussion above forms the basis of interactions of
electro-magnetic waves with matter, there is lots and lots of complications,
details and effects that are not yet considered and you will learn later.
Brainstorm some.
Solution: Polarisation, inhomogeneous fields, non-monochromatic fields,
incoherent fields, backaction between quantum system and field (i.e.
absorption or amplification), QED. See PHY402 for some of those.

(iv) What changes in the picture if we do not start in the ground-state, but an
excited state |ϕe ⟩ ?
Solution: All the above also applies to downwards transitions in energy.
The classical electromagnetic field assumed here makes no distinction be-
tween up and down in energy. See discussion of absorption versus stimu-
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lated emission in the lecture, and more in PHY402.
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