
PHY 304, II-Semester 2023/24, Tutorial 4 solution

Stage 1 Variational method for atomic and molecular physics:

(a) Discuss why (or under which conditions) the variational wavefunction:

ψ0(r1, r2) =
Z3

eff

πa30
e−Zeff(r1+r2)/a0 , (1)

could be a good Ansatz for the Helium Hamiltonian.
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(see section 7.5.1)
Solution: This variational wavefunction makes sense because it is essen-
tially the wavefunction of two non-interacting electrons under a Hydrogen
potential with e2 → Ze2 and a0 → a0/Z but now with a pre-factor Z2

eff

also to account for electron screening.

(b) Propose at least one wavefunction that adds an extra parameter to varia-
tionally take into account electron-electron repulsion?
Solution:
We will include the variable r12(= |r1 − r2|),, involving the inter-electron
separation in the wavefunction to variationally take into account electron-
electron repulsion.

ψ′(r1, r2) = ψ0(r1, r2)f(r12) (3)

= ψ0(r1, r2)(1 + αr12) (4)

Here, α is the additional parameter. The second term in Eq. 4 increases
the probability of finding two electrons further apart and reduces the
probability of finding two electrons in regions with r1 ≈ r2.

(c) Discuss why (or under which conditions) the variational wavefunction:

ψ0(r) =
N√
2
(ϕ100(r) + ϕ100(r

′)) =
N√
2πa30

(
e−r/a0 + e−r′/a0

)
, (5)

could be a good Ansatz for the H+
2 Hamiltonian.
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(see section 7.5.2)
Solution: Let’s consider the problem with a very large R first. In that
case, if the electron is near one of them, the second proton should not
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be felt much, hence a Hydrogen ground-state should be a good guess for
the wavefunction of the electron. However the problem is symmetric
under exchange of the protons, hence the state in Eq. (5) is a reasonable
guess. One can essentially think of it as guessing that the electron is in a
superposition of ”sitting at the site of either proton”.

(d) Using this, what is the essence of a covalent molecular bond that we
discover?
Solution: Minimizing the energy functional for the LCAO ansatz and
plotting the Egs = ⟨ Ĥ(R) ⟩ = −E1F (

R
a0
) (see Eqn (7.116) in lecture

notes), one finds that the molecular potential has a local minimum because
of which it is possible to have bound states. This is the essence of why
covalent bonding takes places. At the right distance R, there is excess
charge exactly between the protons weakening their mutual repulsion and
lowering the overall energy.

(e) Propose one or two physically motivated ways how the Ansatz (5) could be
made more powerful by introducing variational parameters.
Solution: One could try to introduce tuneable parameters for example as in

ψvar
0 (r) =N

[
e−α(r+r′) + p

(
e−βr + e−βr′

)]
, (7)

and then try to minimize the energy functional to find the optimal parame-
ters α, β, p. Prior to that we would have to find the correct normalisation
N for all choices of α, β, p and R.

The physical motivation for the first term, would be that it allows the elec-
tron to be even more strongly localised in between the protons (exactly in
between the two protons, r + r′ takes its smallest value. The parameter
p then is some mixing amplitude between this new contribution, and the
second part which we discussed in the lecture. For the latter, we now also
made the width of each Hydrogen ground-state an optimisable parameter.

Stage 2 WKB approximation

(i) Discuss in your team what constitutes the WKB approximation, what is
the basic idea, and how one can estimate whether it will be valid.
Solution: See section 7.6

(ii) Based on your summary, inspect Fig. 1 below and discuss for each case
whether WKB will be good and why, where it won’t be good or why it
won’t be good.
Solution: Case(a): yes, we can read off the potential that for the most
part, over the scale of one λ (one oscillation of ϕ(x)), the fractional change
of E − V (x) is small compared to the value of E − V (x) itself. Case(b):
no. In contrast to (a), over the scale of one wavelength, the change of
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E − V (x) is of the order of typical values of E − V (x) itself. Case(c):
yes, see (a). Case(d): tricky but yes. You’d think the delta-function
potential is the total opposite of a slowly varying potential. However that
affects “only x = 0”, everywhere else V (x) is constant, hence the WKB
solution for the classically forbidden region (since E < V (x) = 0) actually
completely captures Eq. (2.103). Case(e): no, this potential and energy
combination gives rise to many points with E = V near which WKB breaks
down, we thus expect this to be littered with problems. Case(f): no, see
(b). WKB generally works worst for ground-states.

Figure 1: (stage 2) Potentials V (x) (cyan) and energies E (green) are drawn on the same
scale. Wavefunctions ϕ(x) are arbitrarily scaled and drawn with ϕ = 0 on the green line
(except in [d], where ϕ = 0 is the black line).

(iii) In Fig. 2, draw your own guess at the WKB wavefunction for the energies
indicated, and discuss within your team. Take into account the given
values for V , E (dimensionless units) and assume h = 1 and importantly
a mass m = 1/320.
Solution: See drawing in Fig. 2. To draw these we did the following: First
estimate the local de Broglie wavelength near the global minimum for the
lowest energy state drawing in green (which we take as having energy
E = 10. At the minimum p(x) =

√
2mE and λ(x) = h/p(x) is thus

roughly λ ≈ 4. Then we have drawn an oscillation with that wavelength
and continued it to the turning point, while increasing the wavelength
and the amplitude. After reaching the classical turning point we drew an
exponential decay. We do not claim that these estimates have the correct
numbers of nodes etc., but they give a reasonably qualitative idea on how
the wave functions ought to look like.
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Figure 2: (stage 2) Rough guess at WKB approximations ϕWKB(x) (red) for the three
energies shown in green. As usual the zero of the y-axis for the wavefunction is the green
line near the wavefunction.

(iv) With drawings and discussions, elaborate on how one arrives at the WKB
connection formula Eq. (7.139) and what its uses are.
Solution: See figure on page 194 of lecture notes. While we cannot use
the basic WKB idea near the classical turning point, since λ(x) diverges
there, we CAN approximate the potential as linear (thanks to its Taylor
expansion), and thus use the solution of the TISE in a linear potential.
We had seen in QM-I assignment 4, that the normalisabile solution of this
is an Airy function of the first kind. We thus patch together the WKB
solution in the classically forbidden region, with the Airy function near the
classical turning point, and then on the other side patch the Airy function
with the WKB solution in the classically allowed region. Patching together
means we adjust the free constants in the solution such that the overall
wavefunction and its derivative are everywhere continuous).
The formula is most important when we want to know quantised energies
for bound-states.
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