
PHY 304, II-Semester 2023/24, Tutorial 3 solution

Stage 1 Degenerate versus non-degenerate perturbation theory Let us see some
pitfalls in improperly using non-degenerate PT when one should use degenerate
one with a toy example, similar to tutorial 2, stage 3. Consider an abstract
three-level system1 in dimensionless units, with Hamiltonians in matrix form
given below, using the basis {| 1 ⟩, | 2 ⟩, | 3 ⟩} in that order. The sheet provides
the splitting into unperturbed Hamiltonian Ĥ(0) and perturbed Hamiltonian Ĥ ′.

In all cases, we can avoid perturbation theory and just diagonalize the 3 × 3
matrix, and then Taylor expand the eigenvalues to first and second order in λ
(see tutorial3 v3.nb, but do not look at that yet, all required results from it
are provided on this sheet).

(i) Non-degenerate case: Find the first and second order energy correction
for the three states, if the Hamiltonian is Ĥ = Ĥ(0) + Ĥ ′ with (∆2 ̸= ∆3,
λ small):

Ĥ(0) =

 0 0 0
0 ∆2 0
0 0 ∆3

 , Ĥ ′ =

 0 λ λ
λ 0 0
λ 0 0

 . (1)

Hint, the final energies to second order are
{E1 = −∆2+∆3

∆2∆3
λ2, E2 = ∆2 +

λ2

∆2
, E3 = ∆3 +

λ2

∆3
}+O(λ3).

Solution: Using Eq. (7.12), we directly see that all first order corrections

E
(1)
n = ⟨n |Ĥ ′|n ⟩ are zero, since Ĥ ′ does not contain any diagonal ele-

ments. Proceeding to second order with Eq. (7.23), for the present case we
can explicitly write

E
(2)
1 = |⟨ 2 |Ĥ ′| 1 ⟩|2︸ ︷︷ ︸

=λ2

/ (E
(0)
1 − E

(0)
2 )︸ ︷︷ ︸

=−∆2

+ |⟨ 3 |Ĥ ′| 1 ⟩|2︸ ︷︷ ︸
=λ2

/ (E
(0)
1 − E

(0)
3 )︸ ︷︷ ︸

=−∆3

= −∆2 +∆3

∆2∆3

λ2

(2)

E
(2)
2 = |⟨ 1 |Ĥ ′| 2 ⟩|2︸ ︷︷ ︸

=λ2

/ (E
(0)
2 − E

(0)
1 )︸ ︷︷ ︸

=∆2

= λ2/∆2 (3)

E
(2)
3 = |⟨ 1 |Ĥ ′| 3 ⟩|2︸ ︷︷ ︸

=λ2

/ (E
(0)
3 − E

(0)
1 )︸ ︷︷ ︸

=∆3

= λ2/∆3 (4)

Adding these to the unperturbed energies, we recover the Taylor expansion
of the exact energies.

(ii) Degenerate case: Now let ∆2 = ∆3 → ∆0, and change the perturbation
as shown below.

Ĥ(0) =

 0 0 0
0 ∆0 0
0 0 ∆0

 , Ĥ ′ =

 0 λ 0
λ 0 λ
0 λ 0

 . (5)

1Abstract means we don’t care about the underlying physical system for now, because it does not
matter.
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Calculate (or attempt to calculate) again the perturbed energies
to order O(λ2) using non-degenerate perturbation theory. Dis-
cuss what happens separately for perturbations of the state | 1 ⟩
versus states | 2, 3 ⟩. Then compare with the correct values:
{E1 = −λ2/∆0, Ẽ2 = ∆0 + λ + λ2/(2∆0), Ẽ3 = ∆0 − λ + λ2/(2∆0)}.
(Here Ẽ indicates that you cannot directly associate these eigenvalues
with any of the unperturbed eigenstates).
Now redo the calculation using degenerate perturbation theory and
compare again.
Solution: All first order contributions are zero, since the diagonal of the
matrix Ĥ ′ contains only zeros. Comparison with the exact eigenvalues
tells us that this result is already wrong, since there should be contributions
linear in λ. Similar to the calculation in (i), the energy eigenvalues up to
the second order of λ using non-degenerate PT theory are:

E
(2)
1 = |⟨ 2 |Ĥ ′| 1 ⟩|2︸ ︷︷ ︸

=λ2

/ (E
(0)
1 − E

(0)
2 )︸ ︷︷ ︸

=−∆0

+ |⟨ 3 |Ĥ ′| 1 ⟩|2︸ ︷︷ ︸
=0

/ (E
(0)
1 − E

(0)
3 )︸ ︷︷ ︸

=−∆0

= − λ2

∆0

(6)

E
(2)
2 = |⟨ 1 |Ĥ ′| 2 ⟩|2︸ ︷︷ ︸

=λ2

/ (E
(0)
2 − E

(0)
1 )︸ ︷︷ ︸

=∆0

+ |⟨ 3 |Ĥ ′| 2 ⟩|2︸ ︷︷ ︸
=λ2

/ (E
(0)
2 − E

(0)
3 )︸ ︷︷ ︸

=0

“ = ∞′′

E
(2)
3 = |⟨ 1 |Ĥ ′| 3 ⟩|2︸ ︷︷ ︸

=0

/ (E
(0)
3 − E

(0)
1 )︸ ︷︷ ︸

=∆0

+ |⟨ 2 |Ĥ ′| 3 ⟩|2︸ ︷︷ ︸
=λ2

/ (E
(0)
3 − E

(0)
2 )︸ ︷︷ ︸

=0

“ = ∞′′

(7)

We see that while the formula works OK for the first eigenvalue E1, we
cannot successfully apply the second order formula to the degenerate eigen-
values, since for those it contains diverging terms.

For the two unperturbed eigenstates | 2 ⟩ and | 3 ⟩, we thus have to
use degenerate perturbation theory. For that we extract the perturbation
Hamiltonian in the degenerate subspace, which is the bottom right 2 × 2
submatrix of Ĥ ′:

Ĥ ′ =

[
0 λ
λ 0

]
. (8)

Diagonalizing this gives an eigenstates |+ ⟩ = (| 2 ⟩+ | 3 ⟩)/
√
2 with eigen-

value E
(1)
+ = +λ and | − ⟩ = (| 2 ⟩ − | 3 ⟩)/

√
2 with eigenvalue E

(1)
− = −λ

[2pts] . Thus here the leading nonvanishing order is found at first order in
Ĥ ′. The complete energies are E± = ∆0 ± λ, which captures the correct
values up to order λ (and we did not learn any second order degenerate
PT, so we stop here 2 ).

2Note the question did not ask you to do second order degenerate PT. Setting that up involves the
use of projection operators, see e.g. Sakurai section 5.2
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(iii) Degenerate case, perturbation diagonal in unperturbed basis:
Now let’s look at a simpler case

Ĥ(0) =

 0 0 0
0 ∆0 0
0 0 ∆0

 , Ĥ ′ =

 0 0 0
0 0 0
0 0 λ

 . (9)

Use non-degenerate PT to first order, and compare with the true eigenval-
ues. Discuss.
Solution: Here we can read the true energies off from the total Hamilto-
nian as {0,∆0,∆0 +λ}. We can also safely use first order non-degenerate
perturbation theory to predict these.

Stage 2 Variational method: Consider the simple harmonic oscillator with

Ĥ =
p̂2

2m
+

1

2
mω2x2. (10)

(a) Use the variational method with the normalized trial function φ(x) =
(2β/π)1/4e−βx2

with variational parameter β. Find the value of β that
gives the best approximation of the ground-state and ground-state wave-
function. Hint: You may use

∫∞
−∞ dx e−αx2

x2 =
√
π/(2α3/2), for real α > 0

(in all the following), and
∫∞
−∞ dx e−αx2 ∂2

∂x2 e
−αx2

= −
√

πα
2
.

(b) Using that result, also find the variational value for the ground-state energy.
Discuss the reason for the accuracy of the answers that you find

Solution:

(a) Let |Ψg ⟩ be the true ground-state of a Hamiltonian Ĥ with energy Eg. Then

for all other quantum states we have that E[Ψ] = ⟨Ψ |Ĥ|Ψ ⟩ > Eg. Proof,

see Eq. (7.90) and below: Let us order eigenstates of Ĥ such that their
energy increases with n, hence Egs = E0 ≤ E1 ≤ E2 · · · . Then we can
expand the state Ψ(x) =

∑
n cnϕn(x), and

⟨ Ĥ ⟩ =
∫

dx

(∑
k

c∗kϕ
∗
k(x)

)∑
n

cn Ĥϕn(x)︸ ︷︷ ︸
=Enϕn(x)


=
∑
kn

c∗kcnEn

∫
dxϕ∗

k(x)ϕn(x)︸ ︷︷ ︸
δn,k

=
∑
n

|cn|2En. (11)

Since all En ≥ Egs we can write
∑

n |cn|2En ≥ Egs

∑
n

|cn|2︸ ︷︷ ︸
=1

= Egs.
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(b) We have to find the energy functional

E[φ] =

∫
dx φ∗(x)

p̂2

2m
φ(x)︸ ︷︷ ︸

=Ekin

+

∫
dx φ∗(x)

mω2x2

2
φ(x)︸ ︷︷ ︸

=Epot

(12)

Using the integrals provided we can read off:

Ekin = − ℏ2

2m
(2β/π)1/2

∫
dx e−βx2 ∂2

∂x2
e−βx2

= − ℏ2

2m
(2β/π)1/2

(
−
√

πβ

2

)
=

ℏ2β
2m

,

Epot =
mω2

2
(2β/π)1/2

∫
dx e−2βx2

x2

=
mω2

2
(2β/π)1/2

√
π/(2(2β)3/2) =

mω2

8β
,

E =
ℏ2β
2m

+
mω2

8β
. (13)

Now solving d
dβ
E[φ] = 0 to find the minimum we have

ℏ2

2m
− mω2

8β2
= 0,

β =
mω

2ℏ
. (14)

such that our optimal trial wavefunction is φtrial(x) = φ(x) =
(2mω

2ℏ /π)
1/4e−

mω
2ℏ x2

.

(c) Insertion of this β into E[β] and some simplification gives

E[φ] =
ℏ2

2m

mω

2ℏ
+

mω2

8

2ℏ
mω

,⇔ E = ℏω/2, (15)

which is the true ground-state energy. Also φtrial(x) was the true ground-
state wavefunction. This is expected if the family of trial functions contains
the correct solution for the right choice of β.
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