
PHY 304, II-Semester 2023/24, Tutorial 1 solution

Stage 1 Checklist Let’s play a revision game for QM-I on your table: Everyone in turn
quickly answer a question from below. Everyone then can agree, disagree or
discuss. If you don’t know the answer when it is your turn, pass or pick another
question, put take note of those points for revision later.
Solution: The main point of the below was to get you to think about all the
items and thus assist in identifying questions that you are uncomfortable with,
or triggering discussion. As such there may be no real (unique) solution. Below
I inserted what I would answer myself.

(a) Basic structure of quantum mechanics Instead of a well defined
position and momentum as in classical mechanics, the quantum mechanical
particle is described by a wave function Ψ(x, t) ∈ C. Answer the following
questions as a self-check: What is the interpretation/meaning of this
wavefunction? It captures all information about the physical state of the
particle. |Ψ(x0, t)|2dx is the probability to find the particle at time t = 0 in
the infinitesimal interval [x0, x0 + dx). The phase of the wavefunction may
carry information about a net motion of the particle.
Why is it complex and what does the complex part of the numbers tell
us? We know from experiment that the momentum of a quantum particle
is defined by its de-Broglie wavelength p = h/λ and its energy by its
frequency E = hν. It is not possible to write a wave equation that provides
the correct dispersion relation E = p2/(2m) without complex numbers. For
what they mean see last sentence prior point. .
What is the value of

∫
dx|Ψ(x, t)|2 and why?

∫
dx|Ψ(x, t)|2 = 1 since the

total probability to find the particle “anywhere” must be one. .
What is the importance of a global complex phase Ψ(x, t) → eiφΨ(x, t)
with φ ∈ R? None. A global phase like this never matters. In contrast a
relative phase between two basis functions, such as in ϕ1(x) + eiφϕ2(x) does
matter. .
Which equation governs how the wavefunction changes in time ? The
TDSE. .
What is the meaning of stationary state and how do we find those?
These are states for which the probability distribution does not change in
time, we find them by solving the TISE. .

(b) Measurements in quantum mechanics How do we find the probability
of a measurement of a certain outcome for any observable? We solve the
eigenvalue problem Ô|φn ⟩ = on|φn ⟩. Then we expand the current state of
the particle as |Ψ ⟩ =

∑
n cn|ϕn ⟩. Then the probability to find ok is |ck|2.

.
Why do we need operators in quantum mechanics? We see in the
generalized HUP that uncertainty relations only exist for non-commuting
observables. Operators/matrices may not commute, in contrast simple
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functions always would commute. Since experiments show the existence of
an uncertainty relation, we are forced to design quantum mechanics based
on operators. .
What happens to the quantum state while we find a certain measurement
result? In the example above, the state collapses into |φk ⟩. In more
complicated cases, we can express this through a projection operator
P̂ = |φk ⟩⟨φk |, using |Ψ ⟩ → P̂ |Ψ ⟩ and then renormalising the state to
one. .
How to we find the mean of a large number of measurements? This is
given by the expectation value ⟨ Ô ⟩ .
How do we find the uncertainty or standard deviation of a large number

of measurements? We use the formula ∆O =

√
⟨ Ô2 ⟩ − ⟨ Ô ⟩2, based on

the usual definition of standard deviation in statistics. .

(c) Solutions of the TISE and why we need them For what do we need
the TISE? If we want to know how a quantum state evolves in time. .
In which cases and how can we also find time-dependent information
(time-evolution) from the TISE? When the Hamiltonian does not
explicitly depend on time, we can find all the reuired information about
time evolution from the energies En, energy eigenstates |ϕn ⟩ and initial
expansion coefficients |Ψ(t = 0) ⟩ =

∑
n cn(0)|ϕn ⟩ .

Which nice properties do solutions of the TISE have? They form an
orthonormal basis of the Hilbertspace. The time evolution of a single
solution (not a superposition) is trivial Ψ(x, t) = e−iEt/ℏϕn(x) .
. List a few practical aspects needed to solve the TISE, how many different
methods do you know? We solve it as a boundary value problem. So we
need to know all boundary/connection condition and in the end normalise
our solutions. We had seen methods based on (i) connecting trigonometric
solutions in piecewise constant potentials, (ii) power series, (iii) algebraic
solutions via commutators. .
What is the meaning of degeneracy? A degenerate eigenvalue is one that
is shared by several non-equal eigenvectors/eigenfunctions. It implies that
within the space spanned by those vectors, eigenvectors are not unique up
to a phase. .
List some classifications of solutions of the TISE There are bound-states
and scattering states. .
List typical properties of bound state solutions of the TISE They have
to vanish at infinity. Their energy eigenvalues are quantized. The higher
excited the bound-state, the more nodes does the wavefunction have. .

(d) Solutions of the TDSE and why we need them Why do we need
the TDSE in addition to the TISE? The TDSE is in some sense more
fundamental (since we derived the TISE from it). But also we require it to
know the time evolution if the Hamiltonian DOES depend on time .
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How many methods to solve the TDSE do you know? On a computer,
using a matrix representation and by expanding the state in terms of energy
eigenstates and using TISE solutions .
List a few physical phenomena for which knowing the TISE is not enough
Absorption and emission of light, driven systems with a time varying exter-
nal field. .

(e) Uncertainty relations What is the basic mathematical origin of uncer-
tainty relations in quantum mechanics? List an intuitive and a formal
reason. The origin is that particles are described by waves. A wave
cannot be localized without loosing knowledge of its wavelength. Formally,
the origin are non-commuting operators that represent observables. .
Which uncertainty relations do you know? ∆x∆p > ℏ/2, ∆E∆t > ℏ/2,
∆Lx∆Ly > ℏ|⟨ L̂z ⟩|/2, same for spin. .
What is the relation between uncertainty relations and operators sharing
eigenfunctions? Iff two operators share a complete set of eigenfunctions,
they commute. .
What is special with the energy-time uncertainty relation, and why do we
have to be careful using it? Time is not an operator. Hence one has to
pay extra attention to the definition of “characteristic energy uncertainty”
and “characteristic timescale” involved in it. .

(f) Quantum effects List at least six quantum mechanical phenomena that
are in an essential way different from behaviour in classical mechanics.

quantum tunneling, quantum reflection, interference, quantisation of
observables, measurements affect the state, outcome of measurements is
probabilistic .

(g) Algebraic solutions to quantum problems With which trick can you
often avoid finding all the eigenstates and energies from the TISE, and
instead use the action of operators onto states directly? We can find the
commutation relations of essential operators, and find then a large amount
of information about the eigenstate structure just from those commutation
relations. We did this for the harmonic oscillator in week 4, and for
angular momentum, in week 9 .

(h) Angular momentum How is angular momentum dealt with in quantum
mechanics?

With a vector operator the components of which satisfy the angular
momentum commutation relations. .
Which different types of angular momentum do you know?

Orbital angular momentum, associated with motion about the origin
and represented by angular derivatives of the 3D wavefunction in spherical
polar coordinates, and intrinsic angular momentum or spin, as a property
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of fundamental particles. .
What rules to angular momentum quantum numbers fulfill?

l = 0, 1, 2, 3, ..., s = 0, 1/2, 1, 3/2, 2, ..., −l ≤ ml ≤ l .
Which links between angular momentum and particle motion do you
know from classical mechanics and how are they preserved in quantum
mechanics?

Angular momentum is orthogonal to the plane of motion for a classical
particle in a central potential. This is still “sort of true” in quantum
mechanics, subject to satisfying the 3D uncertainty relations between
position and momentum, which require us to make that plane “blurry”. .
How do we add angular momenta of two particles ? We define
a total angular momentum operator L̂tot = L̂1 + L̂2 and then find
|ℓ1 − ℓ2| ≤ ltot ≤ ℓ1 + ℓ2 im integer steps .

(i) Many-Particles or dimensions What changes in the math when you
move from a single particle to many particles? or from one dimension to
many dimensions? The wavefunction gets and extra argument (dimen-
sion) for each spatial dimension. In 3D it then gets 3 extra dimensions per
particle. .
How can we often tackle those complications to resort back to our easier
1D solutions? We can use separation of variables to reduce higher
dimensional problems to lower dimensional ones, or many particle problems
to single particles ones. This requires dimensions to be uncoupled or
particles to not interact. .
Explain the concept of indistinguishable particles in quantum mechanics?

If two particles have the exact same identity, the uncertainty relation
prohibits us from assigning them separate identities, since we can never
track them once they moved closer to each other than the spatial uncertainty.

.
What is the fundamental consequence of this principle? The wavefunc-
tion must be symmetric or anti-symmetric under exchange of two identical
particles. .
Which classification of particles does it lead to? Fermions and Bosons

.

What is entanglement and why is it interesting? An entangled
two particle state is one that cannot be written as a product of two single
particle states. .

Stage 2 Questions and answers: A first step at having mastered some material is to
be able to ask questions about it, and a second step is to be able to answer such
questions. Perhaps guided by stage 1, I would like to ask each of you to make
two large lists:

(i) Topics from the QM-I course that you feel you understood well.
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(ii) topics from the QM-I course that you feel you understood less well.

Share these lists within your group. Then I would like to ask all those which
comfortable with a topic [i.e. it was on their list (i)] to explain it to those
group-members that are not [i.e. have it on their list (ii)]. This will be
beneficial for both sides: only when you can explain something have you fully
understood it, and often you only understand it when you attempt to explain
it. Afterwards, please make a group-wise collection again with (i) and (ii), in
particular listing all topics that none of you felt happy to explain or all/most
of you felt comfortable with. Sent this final list with your group ID and all
student names to your TA.
Solution: None/your own

Stage 3 Entanglement: (Only do this if you have done the revision part earlier, or
are confident you need none). For each of the following states of two spin-1/2
particles: (i) find the probability to measure the first spin to be “up”, (ii) find
the state after measuring the second one in “up”, (iii) find the probability to
measure first one in “up” after we have measured the second in “up”. Discuss.

(i) |Ψ ⟩ = 1√
2
(| ↑↓ ⟩+ | ↓↑ ⟩)

(ii) |Ψ ⟩ = 1
2
(| ↑↑ ⟩+ | ↑↓ ⟩+ | ↓↑ ⟩+ | ↓↓ ⟩)

Hint: The outcome of a measurement can be found using projection operators
P̂ , compare also postulates in section 3.6. If you measure the first particle to be
in state |φk ⟩, you project the wavefunction before measurement |Ψ ⟩ according
to P̂ |Ψ ⟩, and then re-adjust normalisation to one. In that expression

P̂ = |φk ⟩⟨φk | ⊗ 1⊗ 1, (1)

which acts as identity 1 onto all particles that are not the first.
Solution: (i) We the probability to measure the first spin to be “up” (without
making a statement about the second spin), but summing up all probabilities for
the first spin to be up, for all possible results of the second spin. For the first
function thus p = 1/2. (ii) After measuring the second one in up, the projection
gives us |Ψ ⟩ = | ↓↑ ⟩. Subsequent to that measurement, the probability to
measure first one in “up” is zero. We can write the second wavefunction as
|Ψ ⟩ = 1√

2
(| ↑ ⟩+ | ↓ ⟩) ⊗ 1√

2
(| ↑ ⟩+ | ↓ ⟩). From the previous form we can read

off: (i) p = 1/4 + 1/4 = 1/2. From the second form it is easier to see that after
the measurement |Ψ ⟩ = 1√

2
(| ↑ ⟩+ | ↓ ⟩)⊗ | ↑ ⟩. After that measurement we still

have p = 0.
The first example is an entangled state, in which case the measurement on the
second spin changes the probabilities of measurements on the first one. The
second example is a separable state, where this is not the case.
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Stage 4 Indistinguishable particles: (Only do this if you have done the revision part
earlier, or are confident you need none). Which of the following is a valid
quantum state for the two particles listed (N normalises the wavefunction).

(i) Two 87 Rb atoms: Ψ(x1, x2) = N e−
x21+x22
2σ2 .

(ii) Two 40 K atoms: Ψ(x1, x2) = N e−
x21+x22
2σ2 .

(iii) A Helium atom and a Hydrogen atom: Ψ(x1, x2) = N e−
x21
2σ2 eikx2 .

Solution: Rubidium has Z = 37 protons so the isotope 87 Rb has N = 50
neutrons, i.e. an even number. That makes it a Boson, hence the wavefunction
must be symmetric under the swap x1 ↔ x2, which it is, so this is a valid
quantum states for two identical Bosons. Potassium has Z = 19 protons so
the isotope 40 K has N = 21 neutrons, i.e. an odd number. That makes
it a Fermion, hence the wavefunction must be anti-symmetric under the swap
x1 ↔ x2, which it is not, so this is an invalid quantum states for two identical
Fermions. The last example are two different particles, so there are no special
symmetry requirements on the wavefunction and the state give is valid.
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