
PHY 304, II-Semester 2023/24, Assignment 6 solution

(1) Kicked quantum dot [12 pts] Consider the particle in an infinite square well
potential, as discussed in QM-I, section 2.2.1, which is initially in the ground-state n = 1
and then subject to a briefly pulsed perturbation

Ĥ ′(t) = κ
(
x̂− a

2

)3

sin2 (πt/T ) for 0 < t < T, (1)

and again Ĥ ′(t) = 0 afterwards.

(a) To first order in κ, find the transition probabilities from the ground state n = 1
initially, to any other state n′. [6 pts]
Solution: This is a pulsed perturbation (not periodic since we are just looking at
a single half cycle of the sine), hence referring to section 9.1.1 from the lecture,
Eq. (9.10) gives us the transition amplitude between the two states as:

df (t) = δfi −
i

ℏ

∫ T

0

ei(E
0
f−E0

i )t
′/ℏ⟨ϕ0

f |H ′(t′)|ϕ0
i ⟩dt′ (2)

in the given state, the particle performs the transition from the ground state n=1 to
any final state n′. Thus, the above equation (2) is modified as:

dn′(t) = δn′1 −
i

ℏ

∫ T

0

ei(E
0
n′−E0

1)t
′/ℏ⟨ϕ0

n′ |H ′(t′)|ϕ0
1 ⟩dt′ (3)

We already know that ϕ0
n′ =

√
2
a
sin(n

′πx
a

) and E0
n′ = n′2π2ℏ2

2ma2
, so that Eq. (3) reads:

dn′(t) = δn′1 −
2

a

i

ℏ

∫ T

0

ei(n
′2−1) π2ℏ2

2ma2
t′/ℏ⟨ sin

(
n′πx

a

)
|κ

(
x̂− a

2

)3

sin2

(
πt

T

)
| sin

(πx
a

)
⟩dt

(4)

We see that this decomposes into two pieces, the spatial matrix element Mfi and the
integration over the time-dependence of the pulse and the oscillatory factors from
initial and final state energies, It. We evaluate both of them separately.
The spatial matrix element

Mn′i =
2

a

∫ a

0

dx sin

(
n′πx

a

)(
x− a

2

)3

sin
(πx
a

)
= −6a3n′(1 + (−1)n

′
)(−16(1 + n′2) + (−1 + n′2)2π2)

2(−1 + n′2)4π4
(5)

and the time integral

It = − i

ℏ

∫ T

0

ei(1−n′2)
E1t

′
ℏ k0 sin

2

(
πt

T

)

= −2

ℏ

(
eiE1(n′2−1)T/ℏ − 1

)
e−iE1(n2−1)T/ℏπ2k0

4E1

ℏ (n2 − 1)π2 − (E1/ℏ)3(n2 − 1)3T 2
(6)
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We then combine all this into the transition probability

Pn′ = |dn′(t)|2 = |Mn′iIt|2. (7)

The matrix elements in Eq. (5) provide “selection rules”. We see that they are non-
zero only if n′ is even. Even quantum numbers correspond to anti-symmetric (odd
symmetry) wave functions. We see that since we have an odd perturbation ∼ x3,
we can only make a transition from the initially even state to an odd state. These
considerations are similar to those providing us the dipole selections rules for atomic
transition (see e.g. example 50 and section 9.3.4.)

(b) Checkout these probabilities in the limits T → 0 and T → ∞ and justify those based
on physical arguments. [2pts]
Solution: From Eq. (6), it is seen that in the limits T → 0 and T → ∞

lim
T→0

Pn′ = 0 and lim
T→∞

Pn′ = 0

We expect Pf → 0 in both limits. In the first case because the pulse is sudden and
can make no change in the state (see section 9.1.2.). For T → ∞, it is because the
quantum state will adiabatically follow the initial state, and thus return to the ground-
state after the pulse with unit probability so that there is no transition(see section
9.2.2).

(c) Use assignment6 question1 draft.nb, which solves the above scenario numerically,
to verify your calculation from part (a) by implementing your solution in the indicated
spot. Discuss where you see agreement, what differs, and why that might be. [2 pts]
Solution: See Fig. 1. The PT for all even numbered states are very good. For odd
numbered states there is a qualitative difference: The full solution populates these
while PT does not. The reason is that the full solution contained higher order PT
contributions where the system can reach e.g. state 3 via going through state 2 (both
transitions 1 → 2, 2 → 3 are allowed by the selection rules we found in part (a).
Discuss results: I expect that the probabilities from initial state (Even) to all the odd
symmetry states are OK. The other ones are analytically zero but numerically not.
The reason for that is that the numerics contains sequential transitions (1 → 2 → 3),
which would only appear in second order perturbation theory (see week10).

(2) Shift of a harmonic oscillator: [5 pts] Assume a particle of mass m is initially
for t < 0 in the ground-state of a harmonic oscillator potential with frequency ω:

V (x) =
1

2
mωx2. (8)
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Figure 1: (left) Perturbation pulse shape in time (sin (πt/T ) for 0 < t < T ). (right)
Populations of states other than groundstate from full TDSE: blue p2, yellow p3, green p4,
violet p5, red p6. Black dashed lines are p2, p4, p6 from perturbation theory, while pk = 0
for all odd k in PT.

Now at t = 0, we suddenly shift the potential by a displacement x0:

V (x, t > 0) =
1

2
mω (x− x0)

2 . (9)

What is the state of the oscillator immediately after this shift and why? Also find the
probability distribution of the particle position at all t > 0. What is the fastest velocity
with which we could shift the potential slowly from being centered at 0 to being centered
at x0, without causing significant excitations of the oscillator?

Solution: Immediately after the shift, the oscillator remains in the earlier ground-state
ϕ(x) ∼ e−x2/(2σ2) since it did not have any time to evolve and thus respond to the per-
turbation (see section 9.2.1.). Onwards from immediately after the change the potential
remains as Eq. (12) and we can thus consider the evolution according to a constant Hamil-
tonian with initial-state ϕ(x, t ≈ 0) = N e−x2/(2σ2). It is now easiest to shift the origin of
our x-axis to x0, such that the potential Eq. (12) becomes the usual harmonic oscillator
potential but the initial state is now:

ϕ(x, t ≈ 0) = N e−
(x−x0)

2

2σ2 . (10)

We can now solve the TDSE as usual to find the time evolution of the initial state in
Eq. (10) which is the ground state of the harmonic oscillator displaced from the equilib-
rium. This gives us a coherent state in which the probability density∣∣ψ(α)(x, t)

∣∣2 = √
mω

πℏ
exp

(
−mω

ℏ
(x− ⟨x̂(t)⟩)2

)
. (11)

oscillates as a Gaussian wavepacket about the minimum of the harmonic potential.
From the discussion of the quantum adiabatic theorem in section 9.2.2 (Eq 9.36 in

particular), it is clear that the fastest time scale allowed from the adiabatic theorem will
be set by ∼ ℏ

(E1−E0)
.
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To be more specific, let us parametrise the centre of the trap by xc(t) = 0 + x0

T
t, such

that it takes a time T to reach from xc(t) = 0 to xc(t) = x0. The potential energy is then
is then

V (x, 0 < t < T ) =
1

2
mω (x− xc(t))

2 . (12)

such that

∂Ĥ

∂t
= mω (x− xc(t))

x0
T
. (13)

By Eq. (9.36) the key quantity controlling non-adiabatic transitions from the ground to
the first excited state is

⟨ϕ1(t) | ∂∂tĤ(t)|ϕ0(t) ⟩
E1(t)− E0(t)

=
mω x0

T

∫
dx φ∗

1(x− xc(t)) (x− xc(t))φ0(x− xc(t))

ℏω
e.g. mathematica

=
mωx0
ℏωT

σ√
2︸︷︷︸

=
√

ℏ/(2mω)

=
x0
Tωσ

≪ 1 (14)

We can interpret this as follows: Consider the time τ it takes to shift the oscillator
potential by one unit of the ground-state position uncertainty σ: This time is σ/v for
shift-velocity v, which is here x0/T . Hence this time is τ = x0

Tσ
. To avoid non-adiabatic

excitations, it must be much longer than one oscillation period 2π/ω.
If you wrote a much more qualitative discussion, stating that ∼ 1ω is the key time-

scale, that was fine too.

(3) Charged particle in 3D within quantum dot [5 pts] A particle of mass m with
electric charge q is confined to a three-dimensional cubical box of side length L and in the
ground-state until t = 0. It now feels an electric field E = E0e

−αtex for t > 0 only, where
α is a constant, and ex is the unit vector in the x-direction. Calculate the probability that
the charged particle is excited to the first excited state by the time t = ∞. Discuss the
dependence of your result on α, how can you separately understand the limits α = 0,∞?

Solution. The energy eigenfunctions and eigenvalues of a particle in a cubical box of side
L are given by

Ejkl =
π2ℏ2

2mL2
(j2 + k2 + l2), j, k, l = 1, 2, 3, . . . (15)

and

Ψjkl =

√
8√
L3

sin

(
jπx

L

)
sin

(
kπy

L

)
sin

(
lπz

L

)
= | jkl ⟩ (16)
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respectively.
The ground state is | 111 ⟩ and the first excited states are | 211 ⟩, | 121 ⟩, | 112 ⟩. As the
electric field is along the x-axis, then the perturbation due to the dipole moment µ = qxex
is

Ĥ ′ = −µ · E = −qE0xe
−αt (17)

The transition probability for a transition from state n to state m is

P =

∣∣∣∣ 1ℏ2
∫ ∞

0

Ĥ ′
mn exp(iωmnt

′)dt′
∣∣∣∣2 (18)

where ωmn = (Em − En)/ℏ, and H ′
mn is the transition matrix element between states m

and n. For our case

H ′
mn = ⟨ 111 | Ĥ ′|211 ⟩ = ⟨ 111 | −qE0xe

−αt|211 ⟩

= −eE0e
−αt⟨ 111 |x |211 ⟩

= −8qE0e
−αt

L3

∫ L

0

x sin
πx

L
sin

2πx

L
dx

∫ L

0

sin2 πy

L
dy

∫ L

0

sin2 πz

L
dz

=
8qE0e

−αt

L3

(
−8L2

9π2

)
× L

2
× L

2
=

16qE0Le
−αt

9π2
(19)

The terms

⟨ 111 |x |121 ⟩ =
∫ L

0

x sin2 πx

L
dx

∫ L

0

sin
πy

L
sin

2πy

L
dy︸ ︷︷ ︸

=0

∫ L

0

sin2 πz

L
dz (20)

and

⟨ 111 |x |112 ⟩ =
∫ L

0

x sin2 πx

L
dx

∫ L

0

sin
πy

L
sin

2πy

L
dy︸ ︷︷ ︸

=0

∫ L

0

sin2 πz

L
dz (21)

go to zero because of the orthogonality of sine functions. Therefore, Eq. (18) reduces to

P =

(
16qE0

9π2ℏ

)2 ∣∣∣∣∫ ∞

0

exp(−αt+ iω21t)dt

∣∣∣∣2 = ∣∣∣∣16qE0

9π2ℏ

∣∣∣∣2 1

α2 + ω2
21

(22)

where w21 =
E2−E1

ℏ = 3π2ℏ
2mL2 .

From Eq. (22) it is evident that as α tends to ∞, the probability tends to zero. This
is intuitive because for α = 0 the electric field is zero and there is no perturbation that
can cause transitions. At α = 0, one has just a constant electric field E0 such that the
probability of transition is

P =

(
16q

27π2

)2

. (23)
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(4) Driven quantum dot [10 pts] Let us change the perturbation of the (otherwise
unchanged) quantum dot in Q1 to

Ĥ ′(t) = F0

(
x̂− a

2

)3

sin (ωt) (24)

at all t. We are showing numerical solution of the TDSE similar to example 46 page 144
in Fig. 2, from the initial state |Ψ(0) ⟩ = |ϕ1 ⟩ [See online code, we used a Hamiltonian
in matrix form as in QM1, assn5 Q2(c), but that is not important for this question].

(a) See the attached Mathematica notebook assignment6 question4 code v1(a).nb.
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Figure 2: (Q4) Probability pk = |⟨ϕk |Ψ(t) ⟩|2 for the PIB to be in eigenstate k while
subject to (24) from t = 0 for k = 1 (blue), k = 2 (orange). Parameters are (top
left) a = 2, F0 = 0.02, ω = (E5 − E2)/ℏ, (top right) same but ω = 0.999(E5 − E2)/ℏ,
(bottom left) Same as top left but F0 = 20, (bottom right) same as bottom left but
ω = 0.7(E5 − E2)/ℏ.

(b) Using the parameters provided in the caption, quantitatively explain all features of
the dynamics (amplitude and period of main oscillation, choice of states, why is
there which oscillation). We are using dimensionless units with ℏ = m = 1. [4pts]
Solution:(a) In this case we have resonant Rabi oscillations, with Rabi frequency Ω =
0.0019705. Hence the period of population oscillations is T = 2πℏ

Ω
= 3188.62 as seen

in the figure. (b) Here we are looking at detuned Rabi oscillations, which no longer
allow 100 % population transfer, but only to a maximum of p2 = (Ω/∆)2 = 0.0025.
The period of these fast oscillations is given approximately by T = 400 [set by ∆
in this case]. (c) In cases (a,b) due to the small F0 the Rabi frequency was small
compared to the frequency ω of the perturbation. Thus transitions between states | 2 ⟩
and | 1 ⟩ happen on time-scales that are a lot slower than the period of the perturbation,
which means the rotating wave approximation (RWA) (see section 9.3.5) is fulfilled
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very well. For (c,d) the new Ω = 1.9705 actually becomes much close to ω, so that
the RWA fails to be fully valid. We still see a qualitatively similar picture, but now
there are some superimposed faster oscillations, caused by the terms we had neglected
under the RWA.

(c) Using assignment6 question4 code v1.nb: Moderately vary the perturbation am-
plitude F0 (but keep it F0 < 0.05 here) and discuss what happens. Change the
frequency to ω = (E3 − E2)/ℏ and ω = (E2 − E1)/ℏ instead of the default
(ω = (E5 − E2)/ℏ). Discuss what happens and why. [4pts]
Solution:
In plotting following functions, the parameter F0 = 0.04 and the time period of the
oscillation decreases as T ∝ 1

F0
.
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Figure 3: The above plots show transition between E3 and E2 levels (Left) and E2 and
E1 levels (right) with F0 = 0.04. The periodic modulation of the external field ‘F’ has
a frequency matching the transition frequency ωmn = (Em − En)/ℏ between two levels,
probability portrays the periodic oscillations. This condition corresponds to resonant
driving.
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Figure 4: Shows that irrespective of the strength of external force ‘F0 = 0.04’ (less than
0.05), the transition between the states with energy (left) E3 and E2 and with energy
(right) E2 and E1 shows like behaviour. The condition is similar to off-resonant driving.

(d) Now go to large 1 < F0 < 10. Discuss what you see and why? [2pts] Solution:
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Figure 5: The transition between the level E5 and E2 with parameter F0 value as (left)
F0=2, (center) F0=5, (right) F0=9..With increasing F0, we can see that the probability
curves are not varying smoothly anymore as RWA fails to be fully valid. (Detailed dis-
cussion in (b))
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Figure 6: The strength of external force is ‘F0=9’ and the transition between the states
with energy (left) E3 and E2 and with energy (right) E2 and E1 shows similar off-resonance
behaviour as in Fig. 4.
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