
PHY 304, II-Semester 2023/24, Assignment 3

Instructor: Sebastian Wüster
Due-date: 11. Feb. 2024

(1) Integrations in atomic physics: [8 pts] In the week 3 and 4 material, you will see
a few high dimensional integrations that frequently arise in atomic and molecular physics.1

Feel free to provide a solution that is a hybrid between pen/paper and mathematica, but
we need you to clearly discuss all steps that break down the original high dimensional
integral into final 1D pieces.

(a) Find ⟨1
r
⟩, ⟨ 1

r2
⟩ and ⟨ 1

r3
⟩ in a Hydrogen state |nℓm ⟩ [Eq. (4.91)], used in section

(7.3.1) [4pts]. Hints: In these integrations you (and mathematica) may be challenged
by integrations over Laguerre polynomials Lp

q(r) (with arbitrary p, q) times further
functions of r. We shall defeat those with a few cunning tricks, that make the problem
at first much more complicated looking, but in the end do help because they reduce the
integration to one over polynomials and exponentials, which is easy. At the core are
the generating functions2 for Laguerre polynomials, which are

Up(s, ρ) =
(−s)p

(1− s)p+1
exp

(
− ρs

1− s

)
=

∞∑
q=p

Lp
q(ρ)

q!
sq. (1)

Proceed as follows: (i) Where you encounter Laguerre polynomials Lp
q(ρ)

2 in the in-
tegration, write Up(s, ρ)Up(t, ρ) instead. (ii) Integrate, you may use∫ ∞

0

du e−u un = n! (2)

and will reach a function of s, t. (iii) Using the expansion

(1− x)−n =
∞∑
a=0

(
n+ a− 1

a

)
xa, (3)

where the brackets denote a Binomial coefficient, write the result as a power series in
s, t. (iv) Identify which single one of the coefficients of this power series gives you
the integral you were originally after. (v) You have to do this whole program only
once, insertion of the right coefficients in the end gives you all three integrals sought.
To get your final results into the right shape, you also need some further identities
involving Binomial coefficients

m∑
r=0

(
n+ r

r

)
=

(
n+m+ 1

m

)
(4)

1There will be no problem to do this question prior to having gone through the week 4 material.
2Generating function means, that the polynomial that we care about can be viewed as the coefficients

in a power series of said function.
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and

k−1∑
a=0

(k − a)2
(
j + a

a

)
=

(j + 2k + 1)(j + k + 1)!

(k − 1)!(j + 3)!
. (5)

(b) Evaluate the overlapp integral I =
∫
d3r ϕ100(r)ϕ100(r

′) in Eq. (7.110), where ϕ100 is
the Hydrogen ground-state wavefunction [2 pts].

(c) Evaluate the direct and exchange integrals in Eq. (7.113), Eq. (7.114). [2 pts]

Idir = a0

∫
d3r ϕ100(r)

1

r′
ϕ100(r) =

a0
R

−
(
1 +

a0
R

)
e−2R/a0 , (6)

Iex = a0

∫
d3r ϕ100(r)

1

r
ϕ100(r

′) =
(
1 +

a0
R

)
e−R/a0 . (7)

(2) Potential well with linear slope: [6 pts] A particle of mass m is trapped in a
potential well of the form V (x) = β|x| with β > 0.

(a) Sketch this potential and the expected shape and symmetries of the ground-state
wavefunction and justify your answers [1pts].

(b) In oder to find the ground-state, decide on your own trial wavefunction for the varia-
tional method with at least one variational parameter and justify your choices. Using
that trial wavefunction, find an approximation to the ground-state wavefunction and
energy [3pts].

(c) The exact solution3 of this problem has a ground-state energy

Eg = 1.01879

(
β2

2mℏ2

)1/3

(8)

and wavefunction

ϕg(x) = 1.21954

(
2mβ

ℏ2

)1/6

× Ai

[(
2mβ

ℏ2

)1/3

|x| − 1.01879

]
, (9)

where Ai denotes the Airy function (of the first kind). Compare your solution for
the energy with Eq. (8) and discuss why/how the variational method has helped.
Similarly compare your trial solution with the true solution in the same figure using
e.g. mathematica for several different parameters, and discuss your achievements
[2pts].

3Please do not use this kind of function as trial function in (b).
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(3) Higher order perturbation theory: [8 pts] Following our approach of “week 2”,

derive the third order correction of the energy λ3E
(3)
n and the second order correction to

the quantum states λ2|ψ(2)
n ⟩.

(4) Perturbation theory versus exact calculation: [8 pts] Consider the Hamiltonian
in matrix form (basis {| 1 ⟩, | 2 ⟩, · · · | 6 ⟩})

Ĥ =


Ea 0 κ 0 0 0
0 Ea 0 0 −κ 0
κ 0 Ea 0 0 0
0 0 0 Eb 0 2κ
0 −κ 0 0 Eb 0
0 0 0 2κ 0 Eb

 , (10)

for real and positive Ea, Eb, κ, let Eb > Ea.

(a) Assuming κ ≪ Ea, Eb, use the appropriate type of perturbation theory to find all
perturbed eigenvalues and eigenvectors to order κ [2pts].

(b) Now going to the inverse limit of κ ≫ |Eb − Ea|, use the appropriate type of pertur-
bation theory to find all perturbed eigenvalues and eigenvectors to order |Eb − Ea|
[3pts]. Hint: First simplify the Hamiltonian by re-adjusting the zero of energy. Then
change into the eigenbasis appropriate for large κ.

(c) Finally, checkout the spectrum over the whole range of 0 < κ < 10 adapting
Assignment3 program draft v2.nb at the XXX in the code. Discuss your results.
Also discuss the behavior of eigenvalues across the whole range of κ and check out
how one interesting eigenvector changes with κ [3pts].

(5) Zeeman effect: Bonus (= no extra marks and no penalties for not doing
this question. But nice learning in preparation for e.g. PHY402) The script
Assignment3 program bonus draft v1.nb is set up to provide the calculation for the
Zeeman effect for all field strengths, as in example 58. Consider only the | 2p ⟩ state of
Hydrogen. We shall use two different bases for the angular momentum, the total angular
momentum basis

Btot = {| j = 3

2
,mj =

3

2
⟩, | j = 3

2
,mj =

1

2
⟩, | j = 3

2
,mj = −1

2
⟩,

| j = 3

2
,mj = −3

2
⟩, | j = 1

2
,mj =

1

2
⟩, | j = 1

2
,mj = −1

2
⟩} (11)

and the separate basis

Bsep = {|mℓ = 1,ms =
1

2
⟩, |mℓ = 1,ms = −1

2
⟩, |mℓ = 0,ms =

1

2
⟩,

|mℓ = 0,ms = −1

2
⟩, |mℓ = −1,ms =

1

2
⟩, |mℓ = −1,ms = −1

2
⟩} (12)
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(a) Revise QM-I, section 4.8., on addition of angular momenta, to figure out what the
above means, and based on rules there and QM-II Eqns. (7.84) and (7.85) set up a
basis transformation matrix O such that Btot = OBsep. Implement that matrix at one
of the XXX in the code, you may use the defined prefactors. [2 pts]

(b) We have already used the Hamiltonians Ĥa, Ĥb, Ĥc from Eq. (7.81) plus Darwin Term
and relativistic corrections to find the fine-structure energies in Eq. (7.74). Use that
to set up the Matrix Representation of the combination of all these terms in the basis
Btot at XXX for Ĥfs. [2 pts]

(c) We shall ignore Ĥe in Eq. (7.81) but have to add Ĥd. This one is easiest expressed in
the basis Bsep, insert XXX for Ĥmag. [2 pts]

(d) Now combine both contributions into a total Hamiltonian Ĥtot = Ĥfs + Ĥmag at
another XXX and execute all the subsequent lines of code that should find eigenvalues
and eigenvectors as a function of magnetic field. Discuss all the plots. In particular
relate the eigenvectors to the labels of lines in the figures. [3 pts]
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