
PHY 304, II-Semester 2023/24, Assignment 2 solution

(1) Symmetries: [8 pts]

(a) First, supply some of the unproven arguments in our section on symmetries. (i) Show
that the eigenvalue z of a unitary operator must have unit modulus |z| = 1. (ii) Show
that the parity operator is Hermitian. (iii) Show that the rotation operator around
the z axis is:

R̂z(α) = e−iαℏ L̂z . (1)

using similar arguments as those that led to Eq. (6.3). [4 pts]
Solution: (i) Since the operator Û is unitary, we know that Û † = Û−1. Suppose we
found an eigenstate of it with eigenvalue z

Û |ϕ ⟩ = z|ϕ ⟩. (2)

Since Û is not necessarily Hermitian, the eigenvalue does not need to be real, but can
be complex, z ∈ C. If we do the adjoint operation on both sides of (2), we reach

⟨ϕ |Û † = ⟨ϕ |z∗. (3)

Now define |ϕU ⟩ ≡ Û |ϕ ⟩ and inspect

⟨ϕU |ϕU ⟩ = ⟨ϕ | Û †Û︸︷︷︸
=1

|ϕ ⟩︸ ︷︷ ︸
=1

= ⟨ϕ |z∗z|ϕ ⟩, ⇔ |z|2 = 1. (4)

On the left we have first used that Û is unitary and then that |ϕ ⟩ is normalised.
(ii) Let f(x) and g(x) be two functions in the Hilbertspace, then∫ ∞

−∞
dxf ∗(x)[Π̂g(x)] =

∫ ∞

−∞
dxf ∗(x)g(−x) z=−x

= −
∫ −∞

∞
dzf ∗(−z)g(z)

rename z=x
=

∫ ∞

−∞
dxf ∗(−x)g(x) =

∫ ∞

−∞
dx[f(x)Π̂(x)]∗g(x). (5)

According to the first definition of a Hermitian operator that we had seen in Eq. (1.24),
this implies that Π̂ is Hermitian.

(iii) We follow the same steps used to show the form T̂ (a) = e−iaℏ p̂ for the 1D trans-
lation operator, but now using 2 dimensional polar coordinates. Let a wavefunction
in terms of those be Ψ(r, ϕ), then the action of the rotation operator by an angle α is

R̂z(α)Ψ(r, ϕ) = Ψ(r, ϕ− α) (6)
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[compare Eq. (6.20)]. We can now Taylor expand the function Ψ(r, ϕ−α) only in its
angular dimension around the angle ϕ which gives

Ψ(r, ϕ− α) =
∞∑
n=0

(−α)n

n!

dn

dϕn
Ψ(r, ϕ) (7)

=
∞∑
n=0

1

n!

(
−α d

dϕ

)n

Ψ(r, ϕ)
Eq.(4.53)

=
∞∑
n=0

1

n!

(
−iα
ℏ
L̂z

)n

Ψ(r, ϕ)

ez=
∑∞

n=0 z
n/n!

= e−iαℏ L̂zΨ(r, ϕ). (8)

Comparing with Eq. (6), we read of what was to be shown.
,
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Figure 1: Potential from Eq. (9).

(b) Consider a particle of mass m in the potential

V (x, z) = κ(x̂2 + ŷ2) + η̄(x̂4 + ŷ6), (9)

for κ > η̄ > 0. Make a meaningful 2D plot of this potential with a computer (or by
hand).

Find all symmetries of the Hamiltonian. Based on that discuss whether or not you
expect the spectrum to show degeneracies. [4 pts]
Solution: See the plot in Fig. 1 for η = 1 and κ = 1.

We can see that the rotation symmetry that would be present for η = 0 is broken, and
The system thus has only two symmetries, Πx and Πy. But these commute, as we can
show by application onto a testfunction:

(ΠxΠy − ΠyΠx)f(x, y) = Πxf(x,−y)− Πyf(−x, y) = f(−x,−y)− f(−x,−y) = 0.
(10)

Thus there is no reason to expect degeneracies, according to section 6.6.5.
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(2) Perturbed square well potential: [8 pts] A particle is subject to the infinite
square well potential (confined within x = 0 and x = a, see e.g. Eq. (2.10) of QM-1), with
an additional potential of

W (x) = W0x/a. (11)

(a) Make a drawing of the complete potential, and discuss under which conditions we can
handle it in perturbation theory. [2 pts].

(b) Then find the energy corrections to the lowest two states of the original square well
potential to first order perturbation theory. [6 pts]
Solution
(a)Unperturbed part:

V (x) =

{
0 0 ⩽ x ⩽ a
∞ otherwise

The energy eigenvalues:E0
n = n2π2ℏ2

2ma2
; The eigenfunctions: Ψ0

n =
√

2
a
sin nπx

a
with n =

1, 2, 3, ........
Perturbed part: W (x) = W0x

a
;

Figure 2: Diagram of complete potential

Condition: W0 has to be small enough, such that the matrix elements Mmn =
⟨m|Wox/a|n⟩ are small compared to energy differences E

(0)
m − E

(0)
n .

(b)Energy correction to state n=1

E
(1)
1 = ⟨Ψ0

1 |
W0x

a
|Ψ0

1 ⟩ (12)

=
W0

a

2

a

∫ a

0

x sin2 πx

a
dx (13)

=
2W0

a2

∫ a

0

x

2
(1− cos

2πx

a
)dx (14)

=
W0

2
(15)
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Energy correction to state n=2

E
(2)
1 = ⟨Ψ0

2 |
W0x

a
|Ψ0

2 ⟩ (16)

=
W0

a

2

a

∫ a

0

x sin2 2πx

a
dx (17)

=
2W0

a2

∫ a

0

x

2
(1− cos

4πx

a
)dx (18)

=
W0

2
(19)

(3) Charged oscillator: [14pts] Consider a particle of mass m and charge q in a
harmonic potential with frequency ω subject to a constant electric field of strength E .
The Hamiltonian is hence

Ĥ =
p̂2

2m
+

1

2
mω2x̂2 − qE x̂, (20)

(a) Define a suitable splitting of the Hamiltonian for the use of perturbation theory, if
the field is sufficiently weak. What constitutes “sufficiently weak”? [2 pts]

(b) Find all the matrix elements Mnm = ⟨n |Ĥ ′|m ⟩ of whatever you choose as perturba-
tion above. Then use the special case ⟨n |Ĥ ′|n ⟩ to evaluate the first order correction

E
(1)
n to the energies. Hint: Use the ladder operators from Eq. (2.43, QM-I) [2 pts]

(c) Use the Mnm to also find an expression for the second order correction E
(2)
n to the

energy and the first order correction to the states |ψ(1)
n ⟩. [4 pts]

(d) Trying to analytically evaluate E
(2)
n and |ψ(1)

n ⟩ is not going to be very illuminating,
instead let us explore their use on a computer. Assignment2 program draft v1.nb

is set up to help you compare all your results above with those provided by a nu-
merical solution of the complete problem. For that adjust the script at the places
with XXXXX: (i) Complete the definition of TISELHSpert, which should contain the
left hand side of the TISE with the perturbation. (ii) Execute the solution of the
unperturbed oscillator numerically in the line below, and verify eigenvalues are as ex-
pected. (iii) In the definition of Energyfirstorder, insert your first order result from
(b). In the definition of Matrixelement insert Mnm from (c). (iv) Also use this and
Energy[n] to complete the definitions of second order energies, first order states and
normalisation of the perturbed state. Then run all the commands for comparison of
energy eigenvalues and wavefunctions. Discuss and compare with your expectations
from (c). [4 pts]

(e) Why could we have guessed the change under this perturbation of all energy eigen-
values directly from the start, without doing perturbation theory? [2 pts]

Solution: (Note: All a and a† represent ladder operators)
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(a) A suitable splitting is:

Ĥ =
p̂2

2m
+

1

2
mω2x̂2 − qE x̂ = Ĥ(0) + Ĥ ′

where, Ĥ ′ = −qE x̂ represents the perturbed part of Hamiltonian.

From the discussion in section 7.3.1 of lecture notes (specifically Eq. (7.35)
there), it is clear that a sufficiently weak field is one for which all matrix elements

Mnm = ⟨n | − qE x̂|m ⟩ are much less than E
(0)
n − E

(0)
m .

(b) Using position operator expressed in terms of ladder operators:

x̂ = σ(a+ a†), with σ =

√
ℏ

2mω

the perturbation in Hamiltonian takes the form :

H ′ = −qEσ(a+ a†) (21)

The matrix elements Mnm = ⟨n |Ĥ ′|m ⟩ can be found as:

Mnm = ⟨n|Ĥ ′|m⟩ (22)

= −qEσ⟨n|(a+ a†)|m⟩ (23)

= −qEσ(
√
m⟨n |m− 1 ⟩+

√
m+ 1⟨n |m+ 1 ⟩) (24)

= −qEσ
(√

m δn,m−1 +
√
m+ 1 δn,m+1

)
(25)

Now, to find out first order correction to energies we put m = n to get:

E(1)
n = ⟨n|Ĥ ′|n⟩ (26)

= −qE
(√

nδn,n−1 +
√
n+ 1δn,n+1

)
(27)

= 0 (28)

We see that the first order correction to the energies is zero.

(c) The Mnm also enable you to calculate the second order correction E
(2)
n to the energy
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and the first order correction to the states as follows:

E(2)
n =

∑
m̸=n

|Mnm|2

E
(0)
n − E

(0)
m

(29)

=
∑
m̸=n

| − qEσ
(√

m δn,m−1 +
√
m+ 1 δn,m+1

)
|2

E
(0)
n − E

(0)
m

(30)

= q2E2σ2
∑
m̸=n

|
(√

m δn,m−1 +
√
m+ 1 δn,m+1

)
|2

E
(0)
n − E

(0)
m

(31)

= q2E2σ2

(
n+ 1

E
(0)
n − E

(0)
n+1

+
n

E
(0)
n − E

(0)
n−1

)
(32)

= q2E2σ2

(
n+ 1

(−ℏω)
+

n

(ℏω)

)
(33)

= −q
2E2σ2

ℏω
= − q2E2

2mω2
(34)

For 1st order correction to the states, we do the same steps as above (noting Mnm is
real):

|ψ(1)
n ⟩ =

∑
m ̸=n

Mnm

E
(0)
n − E

(0)
m

|ψ(0)
m ⟩ (35)

= (−qEσ)
∑
m ̸=n

(√
m δn,m−1 +

√
m+ 1 δn,m+1

)
E

(0)
n − E

(0)
m

|ψ(0)
m ⟩ (36)

= (−qEσ)

( √
n+ 1

E
(0)
n − E

(0)
n+1

|ψ(0)
n+1 ⟩+

√
n

E
(0)
n − E

(0)
n−1

|ψ(0)
n−1 ⟩

)
(37)

Solution: See Assignment2 program solution v1.nb line. From that mathematica
file, for the parameters inserted there

1. The true energy-eigenvalues of the total Hamiltonian are:
[0.875, 2.875, 4.87501, 6.87502, 8.87502, 10.8751]

2. The first order corrected energy values are found to be:
[1.05625, 3.28125, 5.73125, 8.40625, 11.3063, 14.4312]

3. And the second-order corrected energy values are found to be:
[0.875, 2.875, 4.875, 6.875, 8.875, 10.875]

The deviations calculated also in the script, show that the second order values are much
more closer to the real values than first order ones.
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Figure 3: [left] Unperturbed states (color) and perturbed ones (black dashed). [right]
analytical perturbed states to second order (color) and numerically obtained perturbed
ones (dashed).

(e) We can rewrite the potential by completing the square into

Vtot =
1

2
mω2(x− qE

mω2
)2 − (qE)2

2mω2
(38)

through which we realize that this is just a shifted harmonic oscillator potential, with
new centre at x0 =

qE
mω2 and minimum energy −V0 Logic (or more formally a redefinition

of lengths and energies) then tells us that the solutions are simply ϕn(x
′)from (2.65 in

lecture’s note) with energies Ẽn = En − V0.
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