
PHY 304, II-Semester 2023/24, Assignment 5 solution

(1) Optical theorem: [10 pts] Use the partial wave expansion of the scattering ampli-
tude f(θ) to show that the total scattering cross section σ is given by

σ =
4π

k
Im[f(0)], (1)

where k is the scattering wavenumber and f(0) the forward scattering amplitude. This is
known as the “optical theorem”.
Solution:
We can write the scattering amplitude from Eq. (8.19) in lecture notes as,

f(θ) =
∞∑
l=0

(2l + 1)alpl(cosθ). (2)

Inserting the value of al =
1
k
eiδlsinδl from Eq. (8.30) of lecture notes into (2) we get the

differential scattering cross-section as,

σ(θ) = |f(θ)|2 = 1

k2

∣∣∣∣∣
∞∑
l=0

(2l + 1) exp(iδl)Pl(cos θ) sin δl

∣∣∣∣∣
2

(3)

We know that the total scattering cross-section is,

σ =

∫
σ(θ)dΩ

=

∫ 2π

0

∫ π

0

σ(θ) sin θdθdϕ

= 2π

∫ π

0

σ(θ) sin θdθ (4)

where we have already used the definition of the differential solid angle, dΩ = sin θdθdϕ.
Now plugging Eq. (3) in Eq. (4) we get,

σ =
2π

k2

∫ π

0

[
∞∑
l=0

(2l + 1) exp(iδl)Pl(cos θ) sin δl

]
×

[
∞∑
l′=0

(2l′ + 1) exp(−iδl′)Pl′(cos θ) sin δl′

]
sin θdθ

(5)
For Legendre polynomials, we have the orthogonality relation:∫ +1

−1

Pl(x)Pm(x)dx =
2

2l + 1
δlm (6)

Changing the variable of integration from θ to x by defining cos θ = x and using the
orthogonal property of Legendre polynomials in Eq. (5) we have,

σ =
2π

k2

∞∑
l=0

∞∑
l′=0

(2l + 1) exp(iδl) exp(−iδl′) sin δl(2l
′ + 1) sin δl′

∫ π

0

Pl(x)Pl′(x)dx

=
2π

k2

∞∑
l=0

∞∑
l′=0

(2l + 1) exp(iδl) exp(−iδl′) sin δl(2l
′ + 1) sin δl′

2

2l + 1
δll′ (7)
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which finally reduces to,

σ =
4π

k2

∞∑
l=0

(2l + 1) sin2 δl (8)

For θ = 0, Pl(1) = 1 and the scattering amplitude is,

f(0) =
1

k

∞∑
l=0

(2l + 1) exp(iδl) sin δl (9)

The imaginary part of f(0) is

Im[f(0)] =
1

k

∞∑
l=0

(2l + 1) sin2 δl (10)

From Eqs. (7) and (10) we get the optical theorem,

σ =
4π

k
Im[f(0)] (11)

(2) Rutherford scattering: [10 pts] Consider the scattering of two particles through
the potential

V (r) = −ZZ ′e2

r
e−αr (12)

in the first Born approximation.

(a) Find the scattering amplitude, and express it in terms of the momentum transfer q.

(b) In the limit α → 0, find the corresponding scattering cross-section. Why can we
interpret this now as scattering through the Coulomb potential? Compare your result
with the Rutherford scattering cross-section (e.g. PHY 106) and discuss.

Solution:
(a) In the first Born approximation, the scattering amplitude is (from Eq. (8.40))

f(θ, φ) = − m

2πℏ2

∫
d3r′ei(kin−kf )·r′V (r′) (13)

Inserting the value of the potential and taking q = kin − kf , we get

f(θ) = − m

2πℏ2

∫
r′

2
dr′eiq·r

′
(
−ZZ ′e2

r′

)
e−αr′sinθ′dθ′dϕ′

=
ZZ ′me2

ℏ2

∫ ∞

0

r′dr′e−αr′
∫ π

0

sinθ′eiqr
′cosθ′dθ′

=
ZZ ′me2

ℏ2

∫ ∞

0

r′dr′e−αr′
(
2sinqr′

qr′

)
=

2mZZ ′e2

qℏ2

∫ ∞

0

sinqr′e−αr′dr′

=
2mZZ ′e2

qℏ2
q

q2 + α2
(14)
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with, ∫ π

0

sinθ′eiqr
′cosθ′dθ′ =

2sinqr′

qr′∫ ∞

0

sinqr′e−αr′dr′ =
q

q2 + α2

q2 = 4k2sin2(θ/2) (15)

(b) In the limit of α → 0, q
q2+α2 ≈ 1

q
.

In this case, the scattering amplitude is

f(θ) =
2mZZ ′e2

ℏ2
1

q2
(16)

With the value of q2 from Eq. (15), the corresponding scattering cross-section is

dσ

dΩ
= |f(θ)|2 = m2Z2Z ′2e4

4ℏ4k4sin4(θ/2)
, (17)

For α → 0, the potential in Eq. (12) has the same form as the Coulomb potential and
hence we can interpret the result in Eq. (17) as the scattering cross-section through the
Coulomb potential, V (r) = −ZZ′e2

r
. Thus the result in Eq. (17) matches exactly with the

Rutherford scattering cross-section which is:

dσ

dΩ
=

(
ZZ ′e2

4Ek

)2
1

sin4(θ/2)
(18)

if we plug Ek =
ℏ2k2
m

in Eq. (18).

(3) Two-dimensional scattering of wavepackets: [8pts] The code
Assignment5 2Dscattering draft v1.m solves the TDSE in two dimensions

iℏ
∂

∂t
Ψ(x, t) =

[
− ℏ2

2m

(
∂2

∂x2
+

∂2

∂y2

)
+ V (x, y)

]
Ψ(x, y), (19)

for the initial state

Ψ(x, y) =
1

(π2σ2
xσ

2
y)

1/4
e
− (x−x0)

2

2σ2
x

− y2

2σ2
y eikinx, (20)

and scattering potential V (r) = Apote
−r2/σ2

pot with r =
√

x2 + y2. The wavepacket is set
up broad compared to the range of the scattering potential, so this is the closest we can
get to the incoming plane wave discussed in the lecture, without having to worry about
boundary conditions at the edge of the simulated domain in x and y.

(a) Run Assignment5 2Dscattering draft v1.m without changing parameters, and us-
ing the script Assignment5 scattering slideshow v1.m inspect the time evolution
of the probability density |Ψ(x, y, t)|2. Discuss what you see [3pts].
Solution: see caption of Fig. 1 below.
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(b) Now, for various values of kin in the range kin = 0.5..2, run first
the script Assignment5 2Dscattering draft v1.m to generate the evolu-
tion of the wavepacket without scattering potential Ψnsc(x, y, t), and then
Assignment5 2Dscattering draft v1.m with the same value of kin, to
generates the evolution with scattering potential Ψ(x, y, t). Finally use
Assignment5 comparison wfct slideshow v1.m, which first calculates only
the scattered part of the wavefunction Ψout(x, y, t) = Ψ(x, y, t) − Ψnsc(x, y, t) and
then plots the density of that, to analyse the results (see figures (2) and (3)).
Comment on what you see and why you see it. [5pts] Solution: see captions of Fig. 2
and Fig. 3 below.

Figure 1: (Q3(a)) Time evolution of probability density for kin = 0.5. We see that
once the wavepacket hits the scattering potential, it becomes distorted and quantum
interference features arise in the forward and in the backward direction. In the forward
direction we see certain angles θ with high and some with lower probability density.
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Figure 2: Time evolution of scattered part density |Ψout(x, y, z)|2 for kin = 0.5
The magenta circles indicate where the incoming scattering wavepacket would be (it is
substracted out, in the construction of Ψout(x, y, t) = Ψ(x, y, t) − Ψnsc(x, y, t)). We see
that, once it hits the scattering potential, a scattered wavepacket is created, that is going
out in all directions spherically symmetric. We thus conclude that we are in the s-wave
scattering limit, where the scattering amplitude f ( density in a certain direction) is
independent of the scattering angle θ. From our incoming wavenumber kin we estimate
b1 = 1/kin = 2 (see lecture notes), compared to a potential range of Rpot = 0.7 (from the
code), hence Rpot < 1/k and this makes sense. We also see that the outgoing part itself
does not show any interference fringes. Those that we see in Fig. 1 are thus the result of
interference between the incoming and outgoing waves.
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Figure 3: Time evolution of scattered part density |Ψout(x, y, z)|2 for kin = 1.5. Features
are similar to Fig. 2, but for this higher scattering energy we have b1 = 0.6 this has
become quite close to the potential range of Rpot = 0.7, hence we see an impact of p-wave
scattering, with a typical cos theta dependence (θ = 0 is in the direction of the incoming
wavepacket’s motion, hence up (+x) in the figure, θ = π is down (−x).
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