
PHY 304, II-Semester 2023/24, Assignment 4 solution

(1) Variational Hydrogen atom: [8 pts] Apply the variational method to the Hydro-
gen atom, with the Hamiltonian from Eq. (4.72) QM-I (Ĥrel only).

(a) Use the trial wavefunction ϕ(r) = N e−βr2 , with r =
√
x2 + y2 + z2, to find an ap-

proximation for the ground-state energy and ground-state wavefunction [3pts]
Solution: The Hamiltonian from Eq. (4.72) is:

Ĥrel = − ℏ2

2µ
∆r −

e2

4πε0

1

|r|
(1)

Before we minimize the energy functional ⟨ϕ(r) | Ĥrel|ϕ(r) ⟩, we first need to normalize
the wavefunction. For that we require,∫

d3r |ϕ(r)|2 = 4π

∫ ∞

0

r2|ϕ(r)|2dr = 1, (2)

since nothing depends on angles and hence the angular integrations just give 4π. In-
serting the trial wavefunction we have

4π|N |2
∫ ∞

0

r2e−2βr2dr = 2π|N |2
√

π

25β3
= 1

N =

(
2β

π

) 3
4

. (3)

The energy functional is,

⟨Ĥrel⟩ = ⟨T̂ |⟩+ ⟨V̂ ⟩ (4)

We evaluate the expectation value of the kinetic term and the potential term separately.

⟨T̂ ⟩ = − ℏ2

2µ
|N |2

∫
e−βr2(∇2

re
−βr2)r2 sin θdrdθdϕ (5)

We only need the radial part of the 3D Laplacian operator in spherical coordinates,
since the trial wavefunction does not depend on angles and hence all the angular
derivatives vanish. Thus:

(∇2
re

−βr2) =
1

r2
d

dr

(
r2
d

dr
e−βr2

)
=

1

r2
d

dr

(
−2βr3e−βr2

)
= −2β(3r2 − 2βr4)e−βr2 .

(6)

Inserting Eq. (6) into Eq. (5) we get

⟨T̂ ⟩ = − ℏ2

2µ

(
2β

π

)3/2

(4π)

∫ ∞

0

(3r2 − 2βr4)e−2βr2dr

= −ℏ2

µ
πβ4

(
2β

π

)3/2 [
3

8β
− π

2β
− 3

32β2

]
=

3ℏ2β
2µ

. (7)
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Evaluating the expectation value of the potential is easier

⟨V̂ ⟩ = − e2

4πε0
|N |24π

∫ ∞

0

e−2βr2 1

r
r2dr = − e2

2πε0

√
2β

π
. (8)

Combining both into Eq. (15) gives the complete energy expectation value

⟨Ĥ⟩ = 3ℏ2β
2µ

− e2

2πε0

(
2β

π

)1/2

. (9)

Minimizing with respect to β and approximating µ ≈ m (since the mass of the proton
is much larger than that of the electron),

∂⟨Ĥ⟩
∂β

=
3ℏ2

2m
− e2

2πε0

√
2

πβ
!
= 0 ⇒ β =

2

π

(
me2

6πε0ℏ

)2

=
8

9πa20
(10)

Substituting the above parameter for the width of the Gaussian trial wavefunction into
the upper bound on the minimum value of the energy in Eq. (9) gives us:

⟨H⟩min = − m

2ℏ2

(
e2

4πε0

)2
8

3π
=

8

3π
E1 = −11.5 eV, (11)

which is reasonably close to the true ground state energy of −13.6 eV.

The Ansatz now with the value of the parameter β inserted, reads:

ϕ(r) =

(
4

3πa0

)3/2

e
− 8r2

9πa20 (12)

and correctly captures the scaling of the spatial delocalisation radius of the electron
with a0.

(b) Do the same, using the trial wavefunction ϕ(r) = N e−αr instead. [3pt]
Solution: We need to essentially follow the same steps as above. For the normalization
we have, ∫ ∞

0

4πr2|ϕ(r)|2dr = 1 (13)

which gives,

4π|N |2
∫ ∞

0

r2e−2αrdr = 4π|N |2 1

4α3
= 1

N =

√
α3

π
(14)

The energy functional as before can be broken as,

⟨Ĥrel⟩ = ⟨T ⟩+ ⟨V ⟩ (15)
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The kinetic term is :

⟨T ⟩ = − ℏ2

2µ
|N |2

∫
e−αr(∇2

re
−αr)r2 sin θdrdθdϕ (16)

The radial part of the 3D Laplacian operator in spherical coordinates gives,

(∇2
re

−αr) =
1

r2
d

dr

(
r2
d

dr
e−αr

)
=

1

r2
d

dr

(
−αr2e−αr

)
= (α− 2

r
)αe−αr (17)

Plugging value from Eq. (17) to Eq. (16) we get,

⟨T̂ ⟩ = − ℏ2

2µ
N 2(4π)

∫ ∞

0

(α− 2

r
)αe−2αrr2dr

= − ℏ2

2µ

α3

π
4π

(
−1

4α

)
=

ℏ2α2

2µ
. (18)

Similarly the potential energy term is:

⟨V̂ ⟩ = − e2

4πε0
|N |24π

∫ ∞

0

e−2αr 1

r
r2dr

= − e2

4πε0

α3

π
4π

∫ ∞

0

re−2αrdr

= − e2

4πε0

α3

π
4π

(
1

4α2

)
= − e2

4πε0
α (19)

Thus, the expectation value of the Hamiltonian is:

⟨Ĥ⟩ = ℏ2α2

2µ
− e2

4πε0
α (20)

Minimizing with respect of α, we obtain:

ℏ2α
µ

− e2

4πε0
= 0 giving,

α =
µe2

4πϵ0ℏ2
(21)

With this value of the parameter the upper bound on the energy is found to be:

⟨Ĥ⟩min = − µe4

2ℏ2(4πϵ0)2
= −13.6 eV (22)
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As can be seen, we get an exact answer with this ansatz, since it provided the correct
functional form! The wavefunction after having plugged in the parameter is:

ϕ(r) =

(
1

πa30

)1/2

e−r/a0 , (23)

which also is the exact solution.

(c) Compare both results for wavefunction and energy with the known true solution and
discuss. [2pts]
Solution: We plot the wavefunction found in (a) and (b) and compare it with the
hydrogen wavefunction below:

Figure 1: Here, ϕ1(x) =
(

4
3πa0

)3/2

e
− 8r2

9πa20 and ϕ2(x) =
(

1
πa30

)1/2

e−x/a0 . We see that since

our trial ansatz of (b) had the same functional form as the Hydrogen GS wavefunction,
the variational method gives us the exact ground state energy. We also see that even the
“wrongly shaped” Gaussian Ansatz has been matched onto the true solution as closely as
possible, through the variational approach.

(2) Negative Hydrogen ion: [6 pts] In the lecture, we discussed the application of
a variational Ansatz, Eq. (7.101) to approximate the ground-state of Helium, in which
two electrons are bound to the Helium nucleus through the Coulomb potential. Instead
we could attempt the same Ansatz and calculation for two electrons attached to a single
proton, which would form H−, a negatively charged Hydrogen ion.

(a) Do that for the same trial wavefunction that we had used for Helium in the lecture
and discuss the implications of your result for the ground-state energy [2pts].
Solution: Trial wavefunction is given by

ψ(r1, r2) =
Z3

eff

πa30
e−Zeff (r1+r2)/a0 (24)
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The Hamiltonian is ( from Sec. (7.5))

Ĥ = − ℏ2

2me

(
∇2

r1
+∇2

r2

)
− e2

4πϵ0

(
1

r1
+

1

r2
− 1

|r1 − r2|

)
(25)

We can split the Hamiltonian (similar to Eq. (7.102))

Ĥ = − ℏ2

2me

(
∇2

r1
+∇2

r2

)
− e2

4πϵ0

(
Zeff

r1
+
Zeff

r2

)
+

e2

4πϵ0

(
Zeff − 1

r1
+
Zeff − 1

r1
+

1

|r1 − r2|

)
(26)

From Sec. (7.5.1) we can write the expectation value of Ĥ,

⟨Ĥ⟩ = 2Z2
effE100 + 2(Zeff − 1)

(
e2

4πϵ0

)
⟨1
r
⟩+ ⟨Vee⟩

= 2Z2
effE100 + 2(Zeff − 1)

(
e2

4πϵ0

)(
Zeff

a0

)
= 2Z2

effE100 − 4(Zeff − 1)ZeffE100 −
5Zeff

4
E100

= −2Z2
eff +

11

4
ZeffE100 (27)

We now minimize ⟨Ĥ⟩:

∂⟨Ĥ⟩
∂Zeff

= −4ZeffE100 +
11

4
E100 (28)

To get,

Zeff =
11

16
(29)

Inserting the value of Zeff to find the energy in Eq. 27, we get

⟨Ĥ⟩min =
121

128
E100 = −12.9eV (30)

In this case, we can see that ⟨Ĥ⟩min > −13.6eV . Using this trial wavefunction,
we would thus conclude that there is no stable negative ion bound state, since it is
energetically favorable for one electron to fly off, leaving behind a neutral hydrogen
atom.

(b) Now do the same for the more sophisticated two-electron trial wavefunction

ψ(r1, r2) = N [ϕ1(r1)ϕ2(r2) + ϕ2(r1)ϕ1(r2)] , with

ϕ1(r) =

√
Z3

1

πa30
e−Z1r/a0 , ϕ2(r) =

√
Z3

2

πa30
e−Z2r/a0 , (31)
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for Z1, Z2 > 0 real and adjustable, a0 the Bohr radius, and N a normalisation factor.
Which ground state energy do you find now, how does this change your conclusions
and what would have to be the spin state of the two electrons? [4pts].
Solution:

We begin with the normalization condition:

1 =

∫
|ψ|2d3r1d3r2

= |N |2
(∫

ϕ2
1d

3r1

∫
ϕ2
2d

3r2 + 2

∫
ϕ1ϕ2d

3r1

∫
ϕ1ϕ2d

3r2 +

∫
ϕ2
2d

3r1

∫
ϕ2
1d

3r2

)
= |N |2(1 + 2S2 + 1), (32)

where

S =

∫
ϕ1(r)ϕ2(r)d

3r

=

√
(Z1Z2)3

πa30

∫
e−(Z1+Z2)r/a04πr2dr =

4

a30

(y
3

)3
[

2a30
(Z1 + Z2)3

]
=

(y
x

)3

. (33)

The normalization constant A is therefore given by:

N 2 =
1

2[1 + (y/x)6]
. (34)

For the Hamiltonian operator H, we have:

H = − ℏ2

2m
(∇2

1 +∇2
2)−

e2

4πϵ0

(
1

r1
+

1

r2

)
+

e2

4πϵ0

1

|r1 − r2|
, (35)

Hψ = N

{[
− ℏ2

2m
(∇2

1 +∇2
2)−

e2

4πϵ0

(
Z1

r1
+
Z2

r2

)]
ϕ1(r1)ϕ2(r2)

+

[
− ℏ2

2m
(∇2

1 +∇2
2)−

e2

4πϵ0

(
Z1

r1
+
Z2

r2

)]
ϕ2(r1)ϕ1(r2)

}

+N e2

4πϵ0

{[
Z1 − 1

r1
+
Z2 − 1

r2

]
ϕ1(r1)ϕ2(r2) +

[
Z1 − 1

r1
+
Z2 − 1

r2

]
ϕ2(r1)ϕ1(r2)

}
+ Veeψ

(36)

where Vee is defined as:

Vee ≡
e2

4πϵ0

1

|r1 − r2|
. (37)

The term in first curly brackets is (Z2
1 +Z

2
2)E1ϕ1(r1)ϕ2(r2)+(Z2

2 +Z
2
1)E1ϕ2(r1)ϕ1(r2),

so
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Hψ = (Z2
1 + Z2

2)E1ψ

+N e2

4πϵ0

{[
Z1 − 1

r1
+
Z2 − 1

r2

]
ϕ1(r1)ϕ2(r2) +

[
Z2 − 1

r1
+
Z1 − 1

r2

]
ϕ2(r1)ϕ1(r2)

}
+ Veeψ,

(38)

The expectation value of Ĥ in the state corresponding to the given trial wavefunction
is,

⟨H⟩ = (Z2
1 + Z2

2)E1 + ⟨Vee⟩

+N 2

(
e2

4πϵ0

){
⟨ϕ1(r1)ϕ2(r2) + ϕ2(r1)ϕ1(r2)

∣∣∣∣(Z1 − 1

r1
+
Z2 − 1

r2

)∣∣∣∣ϕ1(r1)ϕ2(r2)⟩

+ ⟨ϕ1(r1)ϕ2(r2) + ϕ2(r1)ϕ1(r2)

∣∣∣∣(Z1 − 1

r1
+
Z2 − 1

r2

)∣∣∣∣ϕ2(r1)ϕ1(r2)⟩

}
(39)

The term within the curly bracket can be simplified as,{}
= (Z1 − 1)⟨ϕ1(r1)

∣∣∣∣ 1r1
∣∣∣∣ϕ1(r1)⟩+ (Z2 − 1)⟨ϕ2(r2)

∣∣∣∣ 1r2
∣∣∣∣ϕ2(r2)⟩

+ (Z2 − 1)⟨ϕ1(r1)

∣∣∣∣ 1r1
∣∣∣∣ϕ2(r1)⟨ϕ2(r2)|ϕ1(r2)⟩

+ (Z1 − 1)⟨ϕ1(r1)|ϕ2(r1)⟩⟨ϕ2(r2)

∣∣∣∣ 1r2
∣∣∣∣ϕ1(r2) + (Z1 − 1)⟨ϕ2(r1)

∣∣∣∣ 1r1
∣∣∣∣ϕ1(r1)⟨ϕ1(r2)|ϕ2(r2)⟩

+ (Z2 − 1)⟨ϕ2(r1)|ϕ1(r1)⟩⟨ϕ1(r2)

∣∣∣∣ 1r2
∣∣∣∣ϕ2(r2) + (Z2 − 1)⟨ϕ2(r1)

∣∣∣∣ 1r1
∣∣∣∣ϕ2(r1)⟩

+ (Z1 − 1)⟨ϕ1(r2)

∣∣∣∣ 1r2
∣∣∣∣ϕ1(r2)⟩

= 2(Z1 − 1)

〈
1

r

〉
1

+ 2(Z1 − 1)

〈
1

r

〉
2

+ 2(Z1 − 1)⟨ϕ1|ϕ2⟩⟨ϕ1

∣∣∣∣1r
∣∣∣∣ϕ2⟩

+ 2(Z2 − 1)⟨ϕ1|ϕ2⟩⟨ϕ1

∣∣∣∣1r
∣∣∣∣ϕ2⟩ (40)

Where,
〈
1
r

〉
1
= Z1

a0
; and

〈
1
r

〉
2
= Z2

a0
.

⟨ϕ1|ϕ2⟩ =
√
Z3

1Z
3
2

πa30
× 4π

∫ ∞

0

r2dr e−(Z1+Z2)r/a0

=
8
√
Z3

1Z
3
2

a0(Z1 + Z2)2

= S =
(y
x

)3

(41)
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⟨ϕ1

∣∣∣∣1r
∣∣∣∣ϕ2⟩ =

√
(Z1Z2)3

πa30
× 4π

∫ ∞

0

e−(Z1+Z2)r/a0r dr

=
y3

2a30

[
a0

Z1 + Z2

]2
=

y3

2a0x2
(42)

So, the expectation value as a function of x and y can be written as,

⟨H⟩ = (x2 − 1

2
y2)E1 +N 2

(
e2

4πϵ0

)
2

a0

{
[Z2

1 + Z2
2 − (Z1 + Z2)] + (x− 2)

(y
x

)3 y3

2x2

}
+ ⟨Vee⟩

= (x2 − 1

2
y2)E1 + 4E1N 2

[
x2 − 1

2
y2 − x+

1

2
(x− 2)

y6

x5

]
+ ⟨V ee⟩ (43)

Computing ⟨Vee⟩:

Vee =
e2

4πϵ0
⟨ψ

∣∣∣∣ 1

|r1 − r2|

∣∣∣∣ψ⟩
=

e2

4πϵ0
N 2⟨ϕ1(r1)ϕ2(r2) + ϕ2(r1)ϕ1(r2)

∣∣∣∣ 1

|r1 − r2|

∣∣∣∣ϕ1(r1)ϕ2(r2) + ϕ2(r1)ϕ1(r2)⟩

=
e2

4πϵ0
N 2

[
2⟨ϕ1(r1)ϕ2(r2)

∣∣∣∣ 1

|r1 − r2|

∣∣∣∣ϕ1(r1)ϕ2(r2)⟩+ 2⟨ϕ1(r1)ϕ2(r2)

∣∣∣∣ 1

|r1 − r2|

∣∣∣∣ϕ2(r1)ϕ1(r2)⟩
]

= 2
e2

4πϵ0
N 2(B + C) (44)

Where

B = ⟨ϕ1(r1)ϕ2(r2)|
1

|r1 − r2|
|ϕ1(r1)ϕ2(r2)⟩; C = ⟨ϕ1(r1)ϕ2(r2)|

1

|r1 − r2|
|ϕ2(r1)ϕ1(r2)⟩.

(45)

B =

(
Z3

1Z
3
2

(πa30)
2

)∫
e−2Z1r1/a0−2Z2r2/a0

|r1 − r2|
d3r1d

3r2. (46)

As on Sec. (7.5.1) , the r2 integral is∫
e−2Z2r2/a0√

r21 + r22 − 2r1r2 cos θ2
d3r2 =

πa30
Z3

2r1

[
1−

(
1 +

2Z2r1
a0

)
e−2Z2r1/a0

]
(47)

Continuing, we have

B =

(
Z3

1Z
3
2

(πa30)
2

)(
πa30
Z3

2

)∫ ∞

0

e−2Z1r1/a0

[
1−

(
1 +

2Z2r1
a0

)
e−2Z2r1/a0

]
r21dr1 (48)

=
4Z3

1

a30

∫ ∞

0

r21e
−2Z1r1/a0 − r21e

−2(Z1+Z2)r1/a0 − 2Z2

a0
r31e

−2(Z1+Z2)r1/a0dr1 (49)

=
4Z3

1

a30

[
a20

(2Z1)2
− a20

(2(Z1 + Z2))2
− 2Z2a

3
0

(2(Z1 + Z2))3

]
(50)

=
Z1Z2

a0(Z1 + Z2)

[
1 +

Z1Z2

(Z1 + Z2)2

]
y2

4a20

(
1 +

y2

4a20

)
. (51)
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and

C =

(
Z3

1Z
3
2

(πa30)
2

)∫
e−Z1r1/a0−Z2r2/a0−Z2r1/a0−Z1r2/a0

1

|r1 − r2|
d3r1d

3r2

=

(
Z1Z2

a0

)3
5

4a0

(
e2

4πϵ0

)2
y2

16a50

=
6

16a0

y6

x5
. (52)

So we have

⟨Vee⟩ = 2

(
e2

4πϵ0

)
N 2

[
y2

4a0x

(
1 +

y2

4a20

)
+

5y4

16a0x3

]
, (53)

⟨H⟩ = E1

{
x2 − 1

2
y2 − 2

[1 + (y/x)6]

[
x2 − 1

2
y2 − x+

1

2
(x− 2)

y6

x5

]

− 2

[1 + (y/x)6]

y2

4x

(
1 +

y2

4x2
+

5y4

4x4

)}

=
E1

(x6 + y6)

{
x8 + x2y6 − 1

2
x6y2 − 1

2
y8 − 2x8 + x6y2

+ 2x7 − x2y6 + 2xy6 − 1

2
x5y2 − 1

2
x3y4 − 5

2
xy6

}

=
E1

(x6 + y6)

{
−x8 + 2x7 +

11

2
x6y2 − 1

2
x5y2 − 1

2
x3y4 +

11

8
xy6 − 1

2
y8
}
. (54)

We can find the extrema of ⟨H⟩ by solving:

∂

∂x
⟨H⟩ = 0 =

∂

∂y
⟨H⟩ (55)

By solving these equations using Mathematica we get the minimum of ⟨H⟩ at x =
1.32245, y = 1.08505, corresponding to Z1 = 1.0392, Z2 = 0.2832.

Now, the calculated ground state energy for this case is,

⟨Ĥ⟩min = 1.0266E100 = −13.962ev. (56)

Here, we are using two different shielding factors, suggesting that one electron is rel-
atively close to the nucleus and the other is further out. Now, ⟨Ĥ⟩min < −13.6ev (but
not by very much), which suggests that a bound state does exist for H−. It’s only bar-
ley bound. The spin state of two electrons should be anti-symmetric because electrons
are identical particles, spatial wavefunction should be symmetric to interchange.
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(3) WKB approximation: [8 pts] Using the WKB method, calculate the transmission
coefficient for the potential barrier (V0, a > 0)

V (x) =

{
V0

(
1− |x|

a

)
if |x| ≤ a

0 if |x| > a,
(57)

for all values of E.

Solution:
From Sec 7.8, the transmission coefficient is

T = e
−2

∫ x2
x1

γdx
(58)

with γ2 = 2m
ℏ2 [V (x)− E] and x1 and x2 are the turning points. At the turning points,

E = V (x) = V0

(
1− |x|

a

)
or

E

V0
= 1− |x|

a

|x| = a

(
V0 − E

V0

)
or x = ±a

(
V0 − E

V0

)
Now,

−2

∫ x2

x1

γdx = −2

√
2m

ℏ2

∫ x2

x1

(
V0 −

V0x

a
− E

)1/2

dx

= −2
√
2m

ℏ
2

3

(
− a

V0

)[(
V0 − E − V0x

a

)3/2
]x2

x1

= −16
√
m

3ℏ
a

V0
(V0 − E)3/2 (59)

Hence the transmission coefficient as a function of energy is

T = exp [−16
√
m

3ℏ
a

V0
(V0 − E)3/2]. (60)

(4) WKB approximation in complex potential landscape: [8 pts] The matlab
script Assignment4 program draft v3.nb solves the TISE numerically as seen in e.g. As-
signment 3 QM-I for the exact same potential as the movie frames in Example 1 QM-1.
Run the script once, to generate the eigenstates and energies.
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(a) By changing statepick you can choose which eigenvector is shown (in the usual style
where we change the baseline of the eigenfunction to sit on the energy). Make a few
plots of qualitatively different states, and discuss, based on your insight of the WKB
approximation, why they take the form shown. In particular focus on the states
where the eigenenergy is close to (below and above) that local maximum (hump) in
the potential. [3pts] Note that solutions must use the mathematica code and plotting
tools.

(b) Now upgrade Assignment4 program draft v3.nb at the bottom such that it can
also calculate, tabulate, and plot the WKB approximation of the eigenstates that
you implement, based on the classical momentum p(x) and the energy En (taken as
known, from the numerical solution of the TISE). Plot those directly on top of the
numerically found states, and discuss for a few examples. Plot the true and the WKB
solution for a couple of cases where it works well or not so well, and discuss why either
is the case. [5pts]

Solution:
We show two states which have eigenenergies close to the local hump (one above and
one below).
(i) For statepick = 75 with energy = -1.9172
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Figure 2: Plotted for statepick = 75 on top of the energy eigenvalue line = -1.9172

Discussion: From the WKB approximation we expect high frequency oscillations near
the local minima and an increase in wavelength and amplitude near the hump. We
see these features in the plot too. Since the wavefunction decays exponentially after
the classical turning point, the oscillations have small magnitude after the hump for
this case.
(ii) For statepick = 82 with energy = -0.368868
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Figure 3: Plotted for statepick = 82 on top of the energy eigenvalue line = -0.368868

Discussion: In this case where the energy is slightly above the potential value at the
hump we see high frequency oscillations with non-negligible amplitude at both (to the
left and right of the hump) the minima regions with the wavefunction decaying after
the edges of the plot where the potential becomes larger than the energy value. We
also see the expected increase in the amplitude and wavelength at the bump indicating
that the particle spends less time there on an average.

(b) See Assignment4 program solution v2.nbfor the WKB implementation
that generates the figures and read the descriptions in the caption for disussion.
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Figure 4: True density (green) and WKB density (red) for a high lying state. WKB breaks
down near the classical turning point on the left, and then completely breaks down near
the classical turning point (CTP) on the right (because the script does not address that
one properly). Overall, WKB does quite good for this high lying states. Ignoring the
expected failure at the right CTP, it nicely captures the probability density until we hit
the left CTP coming from the right. We could do better here, by switching back to the
WKB solution pertaining to the classically forbidden region, which was too clumsy to
implement in the script, but could be done if need be.
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Figure 5: True density (green) and WKB density (red) for statepick = 75. Here we see
the same features as for statepick = 82 except now the agreement the WKB and the true
density becomes a little worse. Overall, the WKB still captures most of the true solution
behaviour.
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Figure 6: Overall WKB is still not that bad, though as expected we see that the WKB
solution for statepick = 60 has even lesser agreement compared to statepick = 75 and
statepick = 80. The WKB here still nicely captures the lengthening of the de-Broglie
wavelength as potential increases and high frequencies at the minima
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