
PHY 304, II-Semester 2023/24, Assignment 3 solution

(1) Integrations in atomic physics: [8 pts] In the week 3 and 4 material, you will see
a few high dimensional integrations that frequently arise in atomic and molecular physics.1

Feel free to provide a solution that is a hybrid between pen/paper and mathematica, but
we need you to clearly discuss all steps that break down the original high dimensional
integral into final 1D pieces.

(a) Find ⟨1
r
⟩, ⟨ 1

r2
⟩ and ⟨ 1

r3
⟩ in a Hydrogen state |nℓm ⟩ [Eq. (4.91)], used in section (7.3.1).

Solution: Mathematica can be used to directly compute the integrals if we explicitly
specify some integers for n, ℓ, m. However it would be nice to know a general result,
which it fails to provide. But we can manually find one as follows. The expectation
value of rk is given by

⟨rk⟩ =
∫
d3r rkψ∗

nlm(r)ψnlm(r) (1)

=

∫ ∞

0

dr rk+2|Rnl(r)|2
∫
dΩ |Ylm(θ, φ)|2 (2)

=

∫ ∞

0

dr N2
nl r

k+2e−ρρ2l (L2l+1
n+l (ρ))

2 (3)

where we have used Eq. (7.133a) and (7.139a) from “Bransden and Joachain,
Quantum Mechanics”

ρ =
2Z

na
r (4)

Nnl = −

{(
2Z

na

)3
(n− l − 1)!

2n((n+ l)!)3

}1/2

(5)

Using Eq. (4) in Eq. (3) we get

⟨rk⟩ = N2
nl

(na
2Z

)k+3
∫ ∞

0

dρ ρ2l+k+2e−ρ (L2l+1
n+l (ρ))

2 (6)

To compute this integral we will make use of the generating function of associated
Laguerre polynomials from Eq. (7.130) of “Bransden and Joachain, Quantum
Mechanics”

Up(s, ρ) =
(−s)p

(1− s)p+1
exp(−ρs/(1− s)) (7)

=
∞∑
q=p

Lp
q(ρ)

q!
sq (8)

Eq. (6), Eq. (7) and Eq. (8) as you shall see will be enough to calculate ⟨rk⟩.
1There will be no problem to do this question prior to having gone through the week 4 material.
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We start by realizing that due to Eq. (8),the product of generating functions
Up(s, ρ)Up(t, ρ) can yield terms of the form Lp

q(ρ)
2 and hence by first calculating

the integral over this product, which can be easily evaluated due to Eq. (7), we can
also extract our required integral over L2l+1

n+l (ρ)
2 for suitable indices p and q.

We therefore begin with the following integral:

I =

∫ ∞

0

dρ e−ρρ2l+k+2Up(s, ρ)Up(t, ρ) (9)

We first use Eq. (7) to compute it explicitly:

I =

∫ ∞

0

dρ ρ2l+k+2 exp

{
−ρ
(
1 +

s

1− s
+

t

1− t

)}
(−s)p(−t)p

(1− s)p+1(1− t)p+1
(10)

Taking u = ρ
(
1 + s

1−s
+ t

1−t

)
and the standard integral result∫ ∞

0

du e−u un = n! (11)

we get,

I =
(−s)p(−t)p

(1− s)p+1(1− t)p+1

(
1 +

s

1− s
+

t

1− t

)−2l−k−3 ∫ ∞

0

du e−u u2l+k+2 (12)

= (−s)p(−t)p(1− st)−2l−k−3(1− s)2l+k−p+2(1− t)2l+k−p+2(2l + k + 2)! (13)

We now use Eq. (8) to write Eq. (9) now also in terms of Associated Laguerre poly-
nomials:

I =
∞∑

i,j=p

∫ ∞

0

dρ e−ρρ2l+k+2Lp
i (ρ)L

p
j(ρ)

si

i!

tj

j!
(14)

To compute the integral in Eq. (6) we need to equate the RHS of Eq. (13) with the
RHS of Eq. (14)

I Let us do this specifically for ⟨1/r⟩, i.e. for k = −1.

∞∑
i,j=p

∫ ∞

0

dρ e−ρρ2l+1Lp
i (ρ)L

p
j(ρ)

si

i!

tj

j!
= (−s)2l+1(−t)2l+1(1− st)−2l−2(2l + 1)!

(15)

= (2l + 1)!
∞∑
a=0

(−s)2l+1+a(−t)2l+1+a

(
2l + a+ 1

a

)
(16)
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where we used (1−x)−n =
∑∞

a=0

(
n+a−1

a

)
xa. We now put p = 2l+1 and compare

the LHS and RHS of Eq. (16) term by term to find that for i = j = n + l in
the LHS, the term with a = n− l − 1 is picked up from the sum in the RHS (as
coefficients of same power of s and t).

We thus retrieve the integral we intended to find initially,∫ ∞

0

dρ e−ρρ2l+1 (L
2l+1
n+l (ρ))

2

[(n+ l)!]2
=

(n+ l)!

(2l + 1)!(n− l − 1)!
× (2l + 1)! (17)

=⇒
∫ ∞

0

dρ e−ρρ2l+1(L2l+1
n+l (ρ))

2 =
((n+ l)!)3

(n− l − 1)!
(18)

Using Eq. (18) and (5) in (6) we finally find〈
1

r

〉
=

Z

an2
(19)

II Let us follow the same procedure for ⟨1/r2⟩ i.e. for k = −2. Plugging this value
of k in Eq. (13) and with p = 2l + 1, we have

I = (−s)2l+1(−t)2l+1(1− s)−1(1− t)−1(1− st)−2l−1(2l)! (20)

For each of the terms (1− s)−1, (1− t)−1 and (1− st)−2l−1 we use the expansion
(1− x)−n =

∑∞
a=0

(
n+a−1

a

)
xa as before to re-write Eq. (20),

I = (2l)!
∞∑
a=0

∞∑
b=0

∞∑
c=0

(−s)2l+1+a+c(−t)2l+1+a+b

(
2l + a

a

)
(21)

In order to get co-efficients of sn+ltn+l from the above sum, we need a+b = n−l−1
and a+ c = n− l − 1.

In order to identify these coefficients let us just look at,

∞∑
a=0

∞∑
c=0

(−s)2l+1+a+c

We see that when c = 0, 1...n − l − 1, we need ”a” to be n − l − 1, n − l − 2...0
in order to keep the exponent of s fixed to n− l − 1. This then means that due
to different c values we have terms of different ”a” in the range 0, ..., n − l − 1
getting added.

Therefore the coefficient of the term sn+ltn+l is:

(2l)!
n−l−1∑
a=0

(
2l + a

a

)
= (2l)!

(
n+ l

n− l − 1

)
=

(n+ l)!

(2l + 1)(n− l − 1)!
(22)

where we have used the “hockey-stick identity“ for the RHS

m∑
r=0

(
n+ r

r

)
=

(
n+m+ 1

m

)
(23)
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whose proof is given in the appendix (You can easily find this on Wikipedia also)
Therefore the integral in Eq. (14) for k = −2 is equal to the coefficient of sn+ltn+l

which we found in Eq. (22),∫ ∞

0

dρ e−ρρ2l
(L2l+1

n+l (ρ))
2

[(n+ l)!]2
=

(n+ l)!

(2l + 1)(n− l − 1)!
(24)

=⇒
∫ ∞

0

dρ e−ρρ2l(L2l+1
n+l (ρ))

2 =
((n+ l)!)3

(2l + 1)(n− l − 1)!
(25)

Using Eq. (25) and (5) in (6) we get〈
1

r2

〉
=

2Z2

a2n3(2l + 1)
(26)

III For ⟨1/r3⟩ we have k = −3. Following the same steps as before, Eq. (14) reads

I = (−s)2l+1(−t)2l+1(1− s)−2(1− t)−2(1− st)−2l(2l − 1)!

= (2l − 1)!
∞∑
a=0

∞∑
b=0

∞∑
c=0

(−s)2l+1+a+c(−t)2l+1+a+b

(
2l + a− 1

a

)(
1 + b

b

)(
1 + c

c

)

= (2l − 1)!
∞∑
a=0

∞∑
b=0

∞∑
c=0

(−s)2l+1+a+c(−t)2l+1+a+b(b+ 1)(c+ 1)

(
2l + a− 1

a

)
(27)

where to reach Eq. (27) we have already used the binomial expansions for
(1− s)−2, (1− t)−2, (1− st)−2l and explicitly calculated

(
1+b
b

)
and

(
1+c
c

)
.

In order to identify the right coefficients we need a + b + c = n− l − 1. We use
the same logic used to find Eq. (22) and see that the coefficient of sn+ltn+l from
the sum turns out to be,

(2l − 1)!
n−l−1∑
a=0

(n− l − 1− a)2
(
2l + a− 1

a

)
= (2l − 1)!

2n(n+ l)!

(n− l − 1)!(2l + 2)!

=
n(n+ l)!

4(n− l − 1)! l(l + 1
2
)(l + 1)

(28)

where we used the identity,

k−1∑
a=0

(k − a)2
(
j + a

a

)
=

(j + 2k + 1)(j + k + 1)!

(k − 1)!(j + 3)!
(29)

which is Eq. (144) derived in the appendix.
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Comparing this coefficient with Eq. (14), we finally have∫ ∞

0

dρ e−ρρ2l−1 (L
2l+1
n+l (ρ))

2

[(n+ l)!]2
=

n(n+ l)!

4(n− l − 1)! l(l + 1
2
)(l + 1)

(30)

=⇒
∫ ∞

0

dρ e−ρρ2l−1(L2l+1
n+l (ρ))

2 =
n[(n+ l)!]3

4(n− l − 1)! l(l + 1
2
)(l + 1)

(31)

Using Eq. (31) and (5) in (6) we get

〈
1

r3

〉
=

Z3

a3n3 l(l + 1)(l + 1
2
)

(32)

Note: Another way to calculate these would be using the Feynman Hellman Theorem

(b) Evaluate the overlapp integral I =
∫
d3r ϕ100(r)ϕ100(r

′) in Eq. (7.110), where ϕ100 is
the Hydrogen ground-state wavefunction.
Solution: Using the hydrogen ground state wavefunction

ϕ100(r
′) =

1
√
πa

3/2
0

e−r/a0 (33)

the overlap integral Eq. (7.110) reads

I =

∫
d3rϕ100(r)ϕ100(r

′) (34)

=

∫ ∞

0

dr

∫ π

0

dθ

∫ 2π

0

dφ
1

πa30
sin θr2e−(r+r′)/a0 (35)

Fig. (1) shows the vector r′ and how it is related to the vector r. Using this in the
equation above we get

I =

∫ ∞

0

dr

∫ π

0

dθ

∫ 2π

0

dφ
1

πa30
sin θr2e−r/a0e−

√
r2+R2−2rR cos θ/a0 (36)

Using the substitution y =
√
r2 +R2 − 2rR cos θ/a0 which gives dy = 1

2ya20
2rR sin θdθ

we get

I =
2

a30

∫ ∞

0

drr2e−r/a0

∫ √
r2+R2+2rR/a0

√
r2+R2−2rR/a0

dy e−y ya
2
0

rR
(37)

=
2

Ra0

∫ ∞

0

drr e−r/a0 [−(y + 1)e−y]
√
r2+R2+2rR/a0√
r2+R2−2rR/a0

(38)

=
2

Ra0

∫ ∞

0

drr e−r/a0

{
−
(
r +R

a0
+ 1

)
)e−(r+R)/a0 +

(
|r −R|
a0

+ 1

)
e−|r−R|/a0

}
(39)

5
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Figure 1: Refer to this coordinate diagram to see how we replaced r′ by its dependence
on r. For this we used r′2 = (r−R)2 = r2 +R2 − 2r ·R = r2 +R2 − 2rRcosθ

We need to split the above integral in two parts:∫ ∞

0

drf(r) =

∫ R

0

drf(r < R) +

∫ ∞

R

f(r > R) (40)

This gives us

I =
2

Ra0

(∫ R

0

dr

{(
r(R− r)

a0
+ r

)
e−R/a0 −

(
r(r +R)

a0
+ r

)
e−2r/a0e−R/a0

}

+

∫ ∞

R

dr

{(
r(r −R)

a0
+ r

)
e−2r/a0eR/a0 −

(
r(r +R)

a0
+ r

)
e−2r/a0e−R/a0

})
(41)

=
2

Ra0

(∫ R

0

dr

{
rR

a0
− r2

a0
+ r − r2

a0
e−2r/a0 − rR

a0
e−2r/a0 − re−2r/a0

}
e−R/a0

+

∫ ∞

R

dr

{(
r2

a0
− rR

a0
+ r

)
eR/a0 −

(
r2

a0
+
rR

a0
+ r

)
e−R/a0

}
e−2r/a0

)
(42)

Using the standard integral results∫
dx xe−x = −(x+ 1)e−x (43)∫
dx x2e−x = −(x2 + 2x+ 2)e−x (44)

We get

I = e−R/a0

(
1 +

R

a0
+

1

3

R2

a20

)
(45)
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(c) Evaluate the direct and exchange integrals in Eq. (7.113), Eq. (7.114).

Idir = a0

∫
d3r ϕ100(r)

1

r′
ϕ100(r) =

a0
R

−
(
1 +

a0
R

)
e−2R/a0 , (46)

Iex = a0

∫
d3r ϕ100(r)

1

r
ϕ100(r

′) =
(
1 +

a0
R

)
e−R/a0 . (47)

Solution: Following the same steps as in part(b) the direct integral reads

Idir = a0

∫ ∞

0

dr r2
1

πa30
e−2r/a0

∫ π

0

dθ sin θ
1√

r2 +R2 − 2rR cos θ

∫ 2π

0

dφ (48)

Substituing y =
√
r2 +R2 − 2rR cos θ which gives dy = rR

y
sin θdθ, we get

Idir =
2

Ra20

∫ ∞

0

dr re−2r/a0

∫ √
r2+R2+2rR

√
r2+R2−2rR

dy (49)

=
2

Ra20

∫ ∞

0

dr re−2r/a0{(r +R)− |r −R|} (50)

=
2

Ra20

(∫ R

0

dr 2r2e−2r/a0 +

∫ ∞

R

dr 2rRe−2r/a0

)
(51)

=
4

Ra20

(
a30
4

− e−2R/a0

4
(a30 + 2Ra20 + 2R2a0) +

e−2R/a0

4
(Ra20 + 2R2a0)

)
(52)

=
a0
R

−
(
1 +

a0
R

)
e−2R/a0 (53)

The exchange integral reads

Iex = a0

∫ ∞

0

dr r2
1

πa30
e−r/a0

1

r

∫ π

0

dθ sin θe−
√
r2+R2−2rR cos θ/a0

∫ 2π

0

dφ (54)

Substituting y =
√
r2 +R2 − 2rR cos θ/a0 which gives dy = 1

2ya20
2rR sin θdθ, we get

Iex =
2

R

∫ ∞

0

e−r/a0

∫ √
r2+R2+2rR/a0

√
r2+R2−2rR/a0

dy ye−y (55)

=
2

R

∫ ∞

0

dre−r/a0

{(
|r −R|
a0

+ 1

)
e−|r−R|/a0 −

(
r +R

a0
+ 1

)
e−(r+R)/a0

}
(56)

=
2

R

(∫ ∞

0

dr

(
− r

a0
− R

a0
− 1

)
e−2r/a0e−R/a0 +

∫ R

0

dr

(
R− r

a0
+ 1

)
e−R/a0

+

∫ ∞

R

dr

(
r −R

a0
+ 1

)
e−2r/a0eR/a0

)
(57)

=
2

R

(
R

2
e−R/a0 +

R2

2a0
e−R/a0

)
=

(
1 +

R

a0

)
e−R/a0 (58)
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(2) Potential well with linear slope: [6 pts] A particle of mass m is trapped in a
potential well of the form V (x) = β|x| with β > 0.

(a) Sketch this potential and the expected shape and symmetries of the ground-state
wavefunction and justify your answers.
Solution:
(a) For the potential V (x) = β|x|, shown below as orange line,

Figure 2: Sketch of potential V (x) = β|x| (orange) and rough expectation of the ground-
state wavefunction (black).

we expect the following basic features for the ground-state wavefunction:

(a) Ground state wave function should be symmetric around x = 0.

(b) It cannot have any nodes.

(c) In the classically forbidden region, it should decay exponentially.

(b) In order to find the ground-state, decide on your own trial wavefunction for the
variational method with at least one variational parameter and justify your choices.
Solution: A trial function that fulfills all the above criteria is

ψ(x) = N e−
x2

2σ2 . (59)

We could also take other functions that fulfill them. In Eq. (59), N is the normal-
ization factor with N = 1√

σπ1/4 and the width σ is taken as variational parameter.

The reason for choosing this wavefunction is, that it is symmetric about x = 0, has
no nodes, and decays in the classically forbidden region.

(c) Using that trial wavefunction, find an approximation to the ground-state wavefunction
and energy.
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Solution: In order to calculate the ground state wavefunction, we begin by calculating
the energy expectation value:

⟨ψ |H|ψ ⟩ = 1

σπ1/2

∫ ∞

−∞
e−

x2

2σ2

(
− ℏ2

2m

d2

dx2
+ β|x|

)
e−

x2

2σ2 dx (60)

=
1

σπ1/2

(∫ 0

−∞

(
ℏ2

2mσ2
− ℏ2x2

2mσ4
− βx

)
e−

x2

σ2 dx+

∫ ∞

0

(
ℏ2

2mσ2
− ℏ2x2

2mσ4
+ βx

)
e−

x2

σ2 dx

)
(61)

=
2

σπ1/2

(∫ ∞

0

(
ℏ2

2mσ2
− ℏ2x2

2mσ4
+ βx

)
e−

x2

σ2 dx

)
(62)

Using, ∫ ∞

0

xe−
x2

σ2 dx =
σ2

2
(63)∫ ∞

0

e−
x2

σ2 dx =
σ
√
π

2
(64)∫ ∞

0

x2e−
x2

σ2 dx =
σ3
√
π

4
, (65)

this integral can be evaluated to give:

E(σ) = ⟨ψ |H|ψ ⟩ = βσ√
π
+

ℏ2

4mσ2
(66)

We now minimize E(σ):

dE(σ)

dσ
=

β√
π
− ℏ2

2mσ3
= 0 (67)

to get

σ =

(
ℏ2
√
π

2mβ

)1/3

. (68)

(d) The exact solution2 of this problem has a ground-state energy

Eg = 1.01879

(
β2ℏ2

2m

)1/3

(69)

and wavefunction

ϕg(x) = 1.21954

(
2mβ

ℏ2

)1/6

× Ai

((
2mβ

ℏ2

)1/3

|x| − 1.01879

)
(70)

2Please do not use this kind of function as trial function in (b).
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Compare your solution for the energy with Eq. (69) and discuss why/how the varia-
tional method has helped. Similarly, compare your trial solution with the true solution
in the same figure using e.g. mathematica for several different parameters, and discuss
your achievements.
Solution:
Inserting the value of σ (from Eq. (68)) to find the energy in Eq. (66) calculated from
the trial wavefunction, we get

E = 1.0241

(
β2ℏ2

2m

)1/3

. (71)

This energy value for the ground state is a good approximation of the exact energy
value mentioned in the question, in particular it captures all the power laws through
which the energy depends on the parameters of the problem (β, m) correctly.

We can also compare the trial wavefunction Eq. (59) with σ taken from Eq. (68)
with the exact ground state wavefunction Eq. (70), as shown in Fig. 3. We can see
that the trial wavefunction gets very close, and we see from the expressions for the
wavefunction widths that it also captures all the essential dependencies on parameters
for that.

Figure 3: Comparison of the optimised trial wavefunction Eq. (59) (orange) with the true
ground-state of the triangular well Eq. (70) (blue).

(3) Higher order perturbation theory: [8 pts] Following our approach of “week 2”,

derive the third order correction of the energy λ3E
(3)
n and the second order correction to

the quantum states λ2|ψ(2)
n ⟩.

Solution: Following the same arguments as given in section (7.1) of the lecture notes, we
can write the power series of both |ψn ⟩ and En as:

|ψn ⟩ = |ψ(0)
n ⟩+ λ|ψ(1)

n ⟩+ λ2|ψ(2)
n ⟩+ ... =

∞∑
k=0

λk|ψ(k)
n ⟩ (72)
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En = E(0)
n + λE(1)

n + λ2E(2)
n + λ3E(3)

n ... =
∞∑
k=0

λkE(k)
n (73)

Inserting Eq. (72) and Eq. (73) into the eigenvalue problem

Ĥ|ψn ⟩ = En|ψn ⟩ (74)

we get:

(
Ĥ(0) + λĤ

′
) (

|ψ(0)
n ⟩+ λ|ψ(1)

n ⟩+ λ2|ψ(2)
n ⟩+ ...

)
=(

E(0)
n + λE(1)

n + λ2E(2)
n + λ3E(3)

n ...
) (

|ψ(0)
n ⟩+ λ|ψ(1)

n ⟩+ λ2|ψ(2)
n ⟩+ ...

)
(75)

Using the fact that different powers of λ are linearly independent,

for λ : Ĥ(0)|ψ(1)
n ⟩+ Ĥ

′ |ψ(0)
n ⟩ = E(0)

n |ψ(1)
n ⟩+ E(1)

n |ψ(0)
n ⟩, (76)

for λ2 : Ĥ(0)|ψ(2)
n ⟩+ Ĥ

′ |ψ(1)
n ⟩ = E(0)

n |ψ(2)
n ⟩+ E(1)

n |ψ(1)
n ⟩+ E(2)

n |ψ(0)
n ⟩, (77)

for λ3 : Ĥ(0)|ψ(3)
n ⟩+ Ĥ

′|ψ(2)
n ⟩ = E(0)

n |ψ(3)
n ⟩+ E(1)

n |ψ(2)
n ⟩+ E(2)

n |ψ(1)
n ⟩+ E(3)

n |ψ(0)
n ⟩,

(78)

Multiplying Eq. (78) with ⟨ψ(0)
n | we get,

⟨ψ(0)
n | Ĥ(0)|ψ(3)

n ⟩︸ ︷︷ ︸
=E

(0)
n ⟨ψ(0)

n |ψ(3)
n ⟩

+⟨ψ(0)
n | Ĥ ′|ψ(2)

n ⟩ = E(0)
n ⟨ψ(0)

n |ψ(3)
n ⟩+ E(1)

n ⟨ψ(0)
n |ψ(2)

n ⟩︸ ︷︷ ︸
=0

+E(2)
n ⟨ψ(0)

n |ψ(1)
n ⟩︸ ︷︷ ︸

=0

+E(3)
n ,

(79)

where we have used ⟨ψ(0)
n |ψ(1,2)

n ⟩ = 0 (in order to preserve normalisation of the perturbed
state, see Griffith).

We then get,

E(3)
n = ⟨ψ(0)

n | Ĥ ′ |ψ(2)
n ⟩ (80)

Using Eq. (77) and re-arranging, we get:

Ĥ(0)|ψ(2)
n ⟩ − E(0)

n |ψ(2)
n ⟩ = E(1)

n |ψ(1)
n ⟩+ E(2)

n |ψ(0)
n ⟩ − Ĥ

′|ψ(1)
n ⟩ (81)

Now we recognise that we can express

|ψ(2)
n ⟩ =

∑
m ̸=n

c(n)m |ψ(0
m ⟩ (82)
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since the |ψ(0
m ⟩ form a basis of the Hilbertspace (and we do not add |ψ(0

m ⟩, to preserve
normalisation of the perturbed state), and insert Eq. (82) into:(

Ĥ(0) − E(0)
n

)
|ψ(2)

n ⟩ =
(
E(1)

n − Ĥ
′
)
|ψ(1)

n ⟩+ E(2)
n |ψ(0)

n ⟩, (83)

to reach: (
Ĥ(0) − E(0)

n

)∑
m̸=n

c(n)m |ψ(0
m ⟩ =

(
E(1)

n − Ĥ
′
)
|ψ(1)

n ⟩+ E(2)
n |ψ(0)

n ⟩ (84)

On the LHS we use that H(0)|ψ(0
m ⟩ = E

(0)
m |ψ(0

m ⟩ and on the RHS we insert the expression

for the first order correction of eigenstates |ψ(1)
n ⟩ that we found earlier:

∑
m ̸=n

c(n)m

(
E(0)

m − E(0)
n

)
|ψ(0

m ⟩ =
(
E(1)

n − Ĥ
′
)∑

l ̸=n

⟨ψ(0)
l | Ĥ ′|ψ(0)

n ⟩
E

(0)
n − E

(0)
l

|ψ(0)
l ⟩+ E(2)

n |ψ(0)
n ⟩ (85)

Now multiplying Eq. (85) with ⟨ψ(0)
j |, using ⟨ψ(0)

j |ψ(0)
m ⟩ = δj,m and only taking the case

for j ̸= n (since for j = n we recover the 2nd order perturbation correction) we get,

c
(n)
j

(
E

(0)
j − E(0)

n

)
= E(1)

n

∑
l ̸=n

⟨ψ(0)
l | Ĥ ′|ψ(0)

n ⟩
E

(0)
n − E

(0)
l

⟨ψ(0)
j |ψ(0)

l ⟩︸ ︷︷ ︸
=δl,j

−
∑
l ̸=n

⟨ψ(0)
l | Ĥ ′|ψ(0)

n ⟩
E

(0)
n − E

(0)
l

⟨ψ(0)
j |Ĥ ′ |ψ(0)

l ⟩

(86)

which gives the co-efficients as:

c
(n)
j =

∑
l ̸=n

⟨ψ(0)
j |Ĥ ′ |ψ(0)

l ⟩
E

(0)
j − E

(0)
n

⟨ψ(0)
l | Ĥ ′|ψ(0)

n ⟩
E

(0)
n − E

(0)
l

− E(1)
n

⟨ψ(0)
j |Ĥ ′ |ψ(0)

n ⟩
(E

(0)
n − E

(0)
j )2

(87)

By using Eq. (87) (with c
(n)
j replaced by c

(n)
m ) in Eq. (82) we finally get the 2nd order

state correction:

|ψ(2)
n ⟩ =

∑
m ̸=n

∑
l ̸=n

⟨ψ(0)
m |H ′|ψ(0)

l ⟩
E

(0)
m − E

(0)
n

⟨ψ(0)
l |H ′|ψ(0)

n ⟩
E

(0)
n − E

(0)
l

|ψ(0)
m ⟩ −

∑
m ̸=n

E(1)
n

⟨ψ(0)
m |Ĥ ′ |ψ(0)

n ⟩
(E

(0)
n − E

(0)
m )2

|ψ(0)
m ⟩

(88)

Now using Eq. (88) into Eq. (80) we also finally get the third order energy correction:

E(3)
n =

∑
m ̸=n

∑
l ̸=n

⟨ψ(0)
m |H ′|ψ(0)

l ⟩
E

(0)
m − E

(0)
n

⟨ψ(0)
l |H ′|ψ(0)

n ⟩
E

(0)
n − E

(0)
l

⟨ψ(0)
n |H ′|ψ(0)

m ⟩ −
∑
m ̸=n

⟨ψ(0)
n |H ′|ψ(0)

n ⟩|⟨ψ(0)
m |H ′|ψ(0)

n ⟩|2

(E
(0)
n − E

(0)
m )2

(89)
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(4) Perturbation theory versus exact calculation: [8 pts] Consider the Hamiltonian
in matrix form (basis {| 1 ⟩, | 2 ⟩, · · · | 6 ⟩})

Ĥ =


Ea 0 κ 0 0 0
0 Ea 0 0 −κ 0
κ 0 Ea 0 0 0
0 0 0 Eb 0 2κ
0 −κ 0 0 Eb 0
0 0 0 2κ 0 Eb

 , (90)

for real and positive Ea, Eb, κ, let Eb > Ea.

(a) Assuming κ ≪ Ea, Eb, use the appropriate type of perturbation theory to find all
perturbed eigenvalues and eigenvectors to order κ.

Solution:

For κ≪ Ea, Eb, the splitting becomes,

Ĥ =


Ea 0 0 0 0 0
0 Ea 0 0 0 0
0 0 Ea 0 0 0
0 0 0 Eb 0 0
0 0 0 0 Eb 0
0 0 0 0 0 Eb


︸ ︷︷ ︸

Ĥ(0)

+


0 0 κ 0 0 0
0 0 0 0 −κ 0
κ 0 0 0 0 0
0 0 0 0 0 2κ
0 −κ 0 0 0 0
0 0 0 2κ 0 0


︸ ︷︷ ︸

Ĥ′

, (91)

It is clear we have to use the degenerate perturbation theory.

For that we separately diagonalize (can be done by hand or using Mathematica) the
subspaces:

Ĥ1 =

 0 0 κ
0 0 0
κ 0 0

 (92)

which gives the eigenvalues as: {−κ, κ, 0} and coefficient eigenvectors that mix the
unperturbed basis states as: {{−1, 0, 1}, {1, 0, 1}, {0, 1, 0}}

and

Ĥ2 =

 0 0 2κ
0 0 0
2κ 0 0

 (93)

which gives the eigenvalues as: {−2κ, 2κ, 0} and coefficient eigenvectors that mix the
unperturbed basis states as: {{−1, 0, 1}, {1, 0, 1}, {0, 1, 0}}

13



The perturbed eigenvalues and eigenvectors to order κ then finally are :

λ1 = Ea − κ , |ψ1 ⟩ = −1


1
0
0
0
0
0

+ 1


0
0
1
0
0
0

 =
1√
2

[
−1 0 1 0 0 0

]T
; (94)

λ2 = Ea + κ , |ψ2 ⟩ = 1


1
0
0
0
0
0

+ 1


0
0
1
0
0
0

 =
1√
2

[
1 0 1 0 0 0

]T
(95)

λ3 = Ea + 0 , |ψ3 ⟩ =
[
0 1 0 0 0 0

]T
(96)

λ4 = Eb − 2κ , |ψ4 ⟩ = −1


0
0
0
1
0
0

+ 1


0
0
0
0
0
1

 =
1√
2

[
0 0 0 −1 0 1

]T
(97)

λ5 = Eb + 2κ , |ψ5 ⟩ = 1


0
0
0
1
0
0

+ 1


0
0
0
0
0
1

 =
1√
2

[
0 0 0 1 0 1

]T
(98)

λ6 = Eb + 0 , |ψ6 ⟩ =
[
0 0 0 0 1 0

]T
(99)

(b) Now going to the inverse limit of κ ≫ |Eb − Ea|, use the appropriate type of pertur-
bation theory to find all perturbed eigenvalues and eigenvectors to order |Eb − Ea|.
Hint: First simplify the Hamiltonian by re-adjusting the zero of energy. Then change
into the eigenbasis appropriate for large κ.

Solution: We start by re-adjusting the zero of energy to Ea after which, for κ ≫
|Eb − Ea|, the splitting becomes:
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Ĥ =


0 0 κ 0 0 0
0 0 0 0 −κ 0
κ 0 0 0 0 0
0 0 0 0 0 2κ
0 −κ 0 0 0 0
0 0 0 2κ 0 0


︸ ︷︷ ︸

Ĥ(0)

+


0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 Eb − Ea 0 0
0 0 0 0 Eb − Ea 0
0 0 0 0 0 Eb − Ea


︸ ︷︷ ︸

Ĥ′

,

(100)

To look for degeneracies in Ĥ(0) we first diagonalize it (using Mathematica)
to get eigenvalues as: {−2κ, 2κ,−κ,−κ, κ, κ} and co-efficient eigenvectors as:
{ 1√

2
{0, 0, 0,−1, 0, 1}, 1√

2
{0, 0, 0,−1, 0,−1}, 1√

2
{0, 1, 0, 0, 1, 0}, 1√

2
{−1, 0, 1, 0, 0, 0}, 1√

2
{0,−1, 0, 0, 1, 0}

, 1√
2
{1, 0, 1, 0, 0, 0}} .

We see that there indeed are degeneracies for which we need degenerate perturbation
theory.

For a clearer analysis of the problem, we first change basis for both parts of the
Hamiltonian to eigenstates of H(0).

We know that if {v1,v2, ...,vn} are eigenvectors of a matrix then the transformation
matrix that diagonalises it is P = [v1 v2 · · · vn]. For our case,

P =
1√
2


0 0 0 −1 0 1
0 0 1 0 −1 0
0 0 0 1 0 1
−1 −1 0 0 0 0
0 0 1 0 1 0
1 −1 0 0 0 0

 (101)

Therefore, Ĥ
(0)
new = P−1Ĥ(0)P and Ĥ ′

new = P−1Ĥ ′P (note that P is orthogonal so
that P−1 = P T ) such that both parts of the Hamiltonian now become:

Ĥ(0)
new =


−2κ 0 0 0 0 0
0 2κ 0 0 0 0
0 0 −κ 0 0 0
0 0 0 −κ 0 0
0 0 0 0 κ 0
0 0 0 0 0 κ

 Ĥ
′

new =



Eb − Ea 0 0 0 0 0
0 Eb − Ea 0 0 0 0

0 0 (Eb−Ea)
2

0 (Eb−Ea)
2

0
0 0 0 0 0 0

0 0 (Eb−Ea)
2

0 (Eb−Ea)
2

0
0 0 0 0 0 0


(102)

For the two non-degenerate eignevalues (−2κ and 2κ) we use non-degenerate pertur-
bation theory (⟨ϕ |H ′|ϕ ⟩) to get Eb − Ea as energy corrections for both.

The degenerate sub-spaces corresponding to both −κ and κ turn out to be diagonal
already.
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The perturbed eigenvalues and eigenvectors then finally are:

λ1 = −2κ+ (Eb − Ea) , |ψnew
1 ⟩ =

[
1 0 0 0 0 0

]T
(103)

λ2 = 2κ+ (Eb − Ea) , |ψnew
2 ⟩ =

[
0 1 0 0 0 0

]T
(104)

λ3 = −κ+
(Eb − Ea)

2
, |ψnew

3 ⟩ =
[
0 0 1 0 0 0

]T
(105)

λ4 = −κ+ 0 , |ψnew
4 ⟩ =

[
0 0 0 1 0 0

]T
(106)

λ5 = κ+
(Eb − Ea)

2
, |ψnew

5 ⟩ =
[
0 0 0 0 1 0

]T
(107)

λ6 = κ+ 0 , |ψnew
6 ⟩ =

[
0 0 0 0 0 1

]T
(108)

These eigenvectors though are in the transformed basis. To get back in the original
basis we use |ψold

n >= P |ψnew
n > to finally get,

λ1 = −2κ+ (Eb − Ea) , |ψold
1 ⟩ =

[
0 0 0 − 1√

2
0 1√

2

]T
(109)

λ2 = 2κ+ (Eb − Ea) , |ψold
2 ⟩ =

[
0 0 0 − 1√

2
0 − 1√

2

]T
(110)

λ3 = −κ+
(Eb − Ea)

2
, |ψold

3 ⟩ =
[
0 1√

2
0 0 1√

2
0
]T

(111)

λ4 = −κ+ 0 , |ψold
4 ⟩ =

[
− 1√

2
0 1√

2
0 0 0

]T
(112)

λ5 = κ+
(Eb − Ea)

2
, |ψold

5 ⟩ =
[
− 1√

2
0 0 − 1√

2
0 0

]T
(113)

λ6 = κ+ 0 , |ψold
6 ⟩ =

[
1√
2

0 1√
2

0 0 0
]T

(114)
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Figure 4: Displays degeneracy lifting as κ increases

(c) Finally, checkout the spectrum over the whole range of 0 < κ < 10 adapting
Assignment3 program draft v2.nb at the XXX in the code. Discuss your results.
Also discuss the behavior of eigenvalues across the whole range of κ and check out
how one interesting eigenvector changes with κ.

Solution: The Mathematica file Assignment3 program solution v2.nb plots the
eigenvalues as a function of κ as:

To show how an interesting eigenvector (one that changes with κ) depends on κ
we plot the 5th eigenvector below: We see that the eigenvector itself changes from
|ϕ5 ⟩ = | 2 ⟩ at κ = 0 to |ϕ5 ⟩ ≈ (| 2 ⟩+ | 5 ⟩)/

√
2 at large κ.

2 4 6 8 10
κ

-1.0

-0.5

0.5

1.0

vec_5_1

0 2 4 6 8 10
κ

0.6

0.7

0.8

0.9

1.0

vec_5_2

2 4 6 8 10
κ

-1.0

-0.5

0.5

1.0

vec_5_3

2 4 6 8 10
κ

-1.0

-0.5

0.5

1.0

vec_5_4

2 4 6 8 10
κ

0.2

0.4

0.6

0.8

vec_5_5

2 4 6 8 10
κ

-1.0

-0.5

0.5

1.0

vec_5_6

Figure 5: Here, ”vec51” means the 1st component of the 5th eigenvector, i.e. ⟨ 1 |ϕ5 ⟩ and
so on.

(5) Zeeman effect: [9 pts] The script Assignment3 program draft v1.nb is set up
to provide the calculation for the Zeeman effect for all field strengths, as in example 58.
Consider only the | 2p ⟩ state of Hydrogen. We shall use two different bases for the angular
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momentum, the total angular momentum basis

Btot = {| j = 3

2
,mj =

3

2
⟩, | j = 3

2
,mj =

1

2
⟩, | j = 3

2
,mj = −1

2
⟩,

| j = 3

2
,mj = −3

2
⟩, | j = 1

2
,mj =

1

2
⟩, | j = 1

2
,mj = −1

2
⟩} (115)

and the separate basis

Bsep = {|mℓ = 1,ms =
1

2
⟩, |mℓ = 1,ms = −1

2
⟩, |mℓ = 0,ms =

1

2
⟩,

|mℓ = 0,ms = −1

2
⟩, |mℓ = −1,ms =

1

2
⟩, |mℓ = −1,ms = −1

2
⟩} (116)

(a) Revise QM-I, section 4.8., on addition of angular momenta, to figure out what the
above means, and based on rules there and QM-II Eqns. (7.84) and (7.85) set up a
basis transformation matrix O such that Btot = OBsep. Implement that matrix at one
of the XXX in the code, you may use the defined prefactors. [2 pts]
Solution: We use equations (7.85) and (7.86) from QM-II which read.

|
(
j = l +

1

2

)
, l, s,mj ⟩ =

√
l +mj +

1
2

2l + 1
| l, s,ml = mj −

1

2
,ms =

1

2
⟩

+

√
l −mj +

1
2

2l + 1
| l, s,ml = mj +

1

2
,ms =

−1

2
⟩ (117)

|
(
j = l − 1

2

)
, l, s,mj ⟩ = −

√
l −mj +

1
2

2l + 1
| l, s,ml = mj −

1

2
,ms =

1

2
⟩

+

√
l +mj +

1
2

2l + 1
| l, s,ml = mj +

1

2
,ms =

−1

2
⟩ (118)

From now on we will skip writing l and s in the states for typographical convenience
and write the states in the format: | j,mj ⟩ and |ml,ms ⟩. The total angular momen-
tum states can be expressed in terms of orbital and spin angular momentum states as
follows ∣∣∣ 3

2
,
3

2

〉
=
∣∣∣ 1, 1

2

〉
(119)∣∣∣ 3

2
,
1

2

〉
=

√
2

3

∣∣∣ 0, 1
2

〉
+

√
1

3

∣∣∣ 1, −1

2

〉
(120)∣∣∣ 3

2
,
−1

2

〉
=

√
1

3

∣∣∣−1,
1

2

〉
+

√
2

3

∣∣∣ 0, −1

2

〉
(121)∣∣∣ 3

2
,
−3

2

〉
=
∣∣∣−1,

−1

2

〉
(122)∣∣∣ 1

2
,
1

2

〉
= −

√
1

3

∣∣∣ 0, 1
2

〉
+

√
2

3

∣∣∣ 1, −1

2

〉
(123)∣∣∣ 1

2
,
−1

2

〉
= −

√
2

3

∣∣∣−1,
1

2

〉
+

√
1

3

∣∣∣ 0, −1

2

〉
(124)

18



Expressing Btot and Bsep as

Btot =



∣∣∣ 32 , 32 〉∣∣∣ 32 , 12 〉∣∣∣ 32 , −1
2

〉∣∣∣ 32 , −3
2

〉∣∣∣ 12 , 12 〉∣∣∣ 12 , −1
2

〉


, Bsep =



∣∣∣ 1, 12 〉∣∣∣ 1, −1
2

〉∣∣∣ 0, 12 〉∣∣∣ 0, −1
2

〉∣∣∣−1, 1
2

〉∣∣∣−1, −1
2

〉


(125)

we get the transformation matrix O

Btot = OBsep, O =



1 0 0 0 0 0

0
√

1
3

√
2
3

0 0 0

0 0 0
√

2
3

√
1
3

0

0 0 0 0 0 1

0
√

2
3

−
√

1
3

0 0 0

0 0 0
√

1
3

−
√

2
3

0


(126)

(b) We have already used the Hamiltonians Ĥa, Ĥb, Ĥc from Eq. (7.81) plus Darwin Term
and relativistic corrections to find the fine-structure energies in Eq. (7.74). Use that
to set up the Matrix Representation of the combination of all these terms in the basis
Btot at XXX for Ĥfs. [2 pts]

Solution: We already have the eigenvalues Enj for the fine structure Hamiltonian Ĥfs.
Looking at the expression for Enj,

Enj = En

[
1 +

α2

n2

(
n

j + 1
2

− 3

4

)]
(127)

we find that these only depend on value of j and n and is independent of mj. Since
n = 2 and l = 1, j takes two values: 3

2
and 1

2
. So we have only two distinct eigenvalues

which are of course degenerate. The script Assignment3 program draft v1.nb is
designed to calculate these or we can do it manually. Based on this it is easy to find
the following matrix representation of Ĥfs

Ĥfs =


E2,3/2 0 0 0 0 0
0 E2,3/2 0 0 0 0
0 0 E2,3/2 0 0 0
0 0 0 E2,3/2 0 0
0 0 0 0 E2,1/2 0
0 0 0 0 0 E2,1/2

 (128)
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In the basis Bsep the Hamiltonian Ĥfs can be expressed as

Ĥ
Bsep

fs = O−1ĤBtot
fs O (129)

(c) We shall ignore Ĥe in Eq. (7.81) but have to add Ĥd. This one is easiest expressed in
the basis Bsep, insert XXX for Ĥmag. [2 pts]

Solution: The Hamiltonian Ĥd and its eigenvalues are

Ĥd =
µB

ℏ
B(L̂z + 2Ŝz) (130)

Eml,ms = µBB(ml + 2ms) (131)

Since the eigenvalues depend only on ml and ms it is convenient to work with Bsep

basis. The Hamiltonian in this basis reads

Ĥd = µBB


2 0 0 0 0 0
0 0 0 0 0 0
0 0 1 0 0 0
0 0 0 −1 0 0
0 0 0 0 0 0
0 0 0 0 0 −2

 (132)

(d) Now combine both contributions into a total Hamiltonian Ĥtot = Ĥfs + Ĥmag at
another XXX and execute all the subsequent lines of code that should find eigenvalues
and eigenvectors as a function of magnetic field. Discuss all the plots. In particular
relate the eigenvectors to the labels of lines in the figures. [3 pts]
Solution: We use Eq. (129) to express Ĥfs in Bsep basis. Then we add to this Ĥd to

get Ĥtot. Alternatively one can express Ĥd in Btot basis.

Ĥtot = O−1ĤBtot
fs O + Ĥd (133)

or Ĥtot = Ĥfs +OĤBsep

d O−1 (134)

However we will use Eq. (133) here since the code is designed to work in Bsep basis.

The eigenvalues of Ĥtot as a function of external magnetic field is given below.
The plots below show how eigenvectors vary with magnetic field. The script file
also gives plot for the asymptotic states for vanishing and for very strong magnetic
fields. It is clear from the section “Asymptotic eigenstates“ of the script file that the
state-labels on the figure in Example 58 of QM-II pertain ONLY to either vanishing
or very strong magnetic fields. For intermediate strength of magnetic fields it is clear
from the plots given above that the eigenstates are superpositions (see the plots for
eigenvectors) of various basis states in Bsep.
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Figure 6: Variation of eigenvalues of Ĥtot w.r.t. external magnetic field

Figure 7: Eigenvector-1 Figure 8: Eigenvector-2

Figure 9: Eigenvector-3 Figure 10: Eigenvector-4

Figure 11: Eigenvector-5 Figure 12: Eigenvector-6
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Some additional interpretation of the weak and strong field zeeman effect that you can
see discussed in books (Griffith, and simpler, Beiser), is this: for weak magnetic fields
spin-orbit coupling first fixes a specific relative alignment of the magnetic moment
from the spin and that due to orbital motion such that these two couple into a fixed
total angular momentum. The magnetic moment from the total angular momentum j
then has 2j + 1 possible orientations wrt. the magnetic field (different values of mj),
such that we get the picture from example 58 for weak field (lines split according to
mj). In contrast, for strong fields, we just separately align the spin magnetic moment
and orbital magnetic moment in the external field. The possible combinations of those
two then give you the five lines on the strong field side of example 58.
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A Identities for binomial coefficients

Consider the expression below for x < 1,

(1− x)−m(1− x)−n = (1− x)−(m+n) (135)

Expanding these in terms of binomial coefficients,

∞∑
a,b=0

(
m+ a− 1

a

)(
n+ b− 1

b

)
xa+b =

∞∑
c=0

(
m+ n+ c− 1

c

)
xc (136)

Upon comparison of the coefficients of like powers of x gives us a+ b = c, so that we can
take b = c− a,

c∑
a=0

(
m+ a− 1

a

)(
n+ c− a− 1

c− a

)
=

(
m+ n+ c− 1

c

)
(137)

Upon redefining the variables m and n we can rewrite this as follows which is known as
Chu–Vandermonde identity.

c∑
a=0

(
m+ a

a

)(
n− a

c− a

)
=

(
m+ n+ 1

c

)
(138)

When n = c we get

c∑
a=0

(
m+ a

a

)
=

(
m+ c+ 1

c

)
(139)

which is the “hockey-stick identity” (23).
When n = k and c = k − 1 we get

k−1∑
a=0

(k − a)

(
m+ a

a

)
=

(
m+ k + 1

k − 1

)
(140)

When n = k + 1 and c = k − 1 we get

k−1∑
a=0

(k − a+ 1)(k − a)

2

(
m+ a

a

)
=

(
m+ k + 2

k − 1

)
(141)

Upon expanding this we see that

k−1∑
a=0

(k − a)2
(
m+ a

a

)
+

k−1∑
a=0

(k − a)

(
m+ a

a

)
= 2

(
m+ k + 2

k − 1

)
(142)

Using Eq. (140) in the above equation we get

k−1∑
a=0

(k − a)2
(
m+ a

a

)
= 2

(
m+ k + 2

k − 1

)
−
(
m+ k + 1

k − 1

)
(143)

=
(m+ 2k + 1)(m+ k + 1)!

(k − 1)!(m+ 3)!
(144)
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